Vitamin A supplementation in rats under pregnancy and nursing induces behavioral changes and oxidative stress upon striatum and hippocampus of dams and their offspring
Abstract Vitamin A is important for both development and maintenance of adult brain homeostasis. However, excessive vitamin A exposure has been linked to cognitive impairments and may induce congenital defects, including neuronal malformations. Recently, we demonstrated that vitamin A supplementatio...
Gespeichert in:
Veröffentlicht in: | Brain research 2011-01, Vol.1369, p.60-73 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Vitamin A is important for both development and maintenance of adult brain homeostasis. However, excessive vitamin A exposure has been linked to cognitive impairments and may induce congenital defects, including neuronal malformations. Recently, we demonstrated that vitamin A supplementation is able to alter behavioral parameters and induce a pro-oxidant state in hippocampus and striatum of adult male rat. Thus, the aim of the present work was to investigate the effects of vitamin A supplementation in pregnant and nursing rats on maternal and offspring striatum and hippocampus. Wistar female rats (7 per group) were orally supplemented with retinyl palmitate (2500, 12,500 and 25,000 IU/kg/day) or saline (control) throughout pregnancy and nursing. Homing test was performed at postnatal days (PND) 5 and 10 for offspring, while open field test (OFT) was carried out at PND19 and 20 for dams and offspring, respectively. Redox parameters were evaluated at PND21 for both. Vitamin A supplementation during pregnancy and nursing increased superoxide dismutase/catalase (SOD/CAT) ratio and oxidative damage in maternal and offspring striatum and hippocampus. Additionally, supplementation induced behavioral alterations. In conclusion, we suggest some caution regarding vitamin A intake during pregnancy and breastfeeding, since oxidative stress can disturb several biological phenomena, including neuronal signaling and neurotransmission, which may induce several behavioral deficits. |
---|---|
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/j.brainres.2010.11.042 |