Magnetic resonance imaging and 3D simulation studies of biofilm accumulation and cleaning on reverse osmosis membranes
▶ Summary of MRI and LB Studies of ROM biofouling. ▶ Simulation of cleaning biofouled ROMs. ▶ Effect of age on cleaning of bio-fouled ROMs quantified. Reverse osmosis (RO) is one of the multiple pressure-driven membrane separation processes used primarily for the production of high purity water for...
Gespeichert in:
Veröffentlicht in: | Food and bioproducts processing 2010-12, Vol.88 (4), p.401-408 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 408 |
---|---|
container_issue | 4 |
container_start_page | 401 |
container_title | Food and bioproducts processing |
container_volume | 88 |
creator | Creber, S.A. Pintelon, T.R.R. Graf von der Schulenburg, D.A.W. Vrouwenvelder, J.S. van Loosdrecht, M.C.M. Johns, M.L. |
description | ▶ Summary of MRI and LB Studies of ROM biofouling. ▶ Simulation of cleaning biofouled ROMs. ▶ Effect of age on cleaning of bio-fouled ROMs quantified.
Reverse osmosis (RO) is one of the multiple pressure-driven membrane separation processes used primarily for the production of high purity water for various industries, including food processing. Biofilm growth in the spiral-wound membrane module, commonly referred to as biofouling, reduces the efficiency to produce water. Biofilm accumulation and removal using chemical cleaning on RO membranes were studied using magnetic resonance imaging (MRI) techniques. Additionally, a previously validated biofilm simulation model, which is based on a lattice Boltzmann platform, was modified to account for cleaning operations. The spatial and velocity MRI experimental results captured biofilm distribution and water flow within the fouled membrane modules and subsequent changes in the biofilm distribution and water flow due to cleaning. Cleaning was simulated by accounting for reductions in the biofilm cohesive strength in the numerical model. Qualitative and quantitative comparisons between the experimental and simulated images showed good agreement. |
doi_str_mv | 10.1016/j.fbp.2010.08.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_860382616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960308510000891</els_id><sourcerecordid>860382616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-55792c83f7280f92fdd8e7bc52476cfcd1c4351aa79709bf4b2d7ba4f6ac8e803</originalsourceid><addsrcrecordid>eNp9kc2O1DAQhC0EEsPCA3DzBcElQztOYkec0C5_0iIucLacTnvkURIP7mQk3h6PZrXHPZVa_qrdqhLirYK9AtV9PO7DcNrXUGaw-yLPxE6Zpql0a9RzsYO-g0qDbV-KV8xHAFBWtTtx_ukPC60RZSZOi1-QZJz9IS4H6ZdR6jvJcd4mv8a0SF63MRLLFOQQU4jTLD3i9vh-ceBEfrnYy5zpTJlJJp4TR5YzzUP2C_Fr8SL4ienNg96IP1-__L79Xt3_-vbj9vN9hbqv16ptTV-j1cHUFkJfh3G0ZAZs68Z0GHBU2OhWeW96A_0QmqEezeCb0Hm0ZEHfiPfXvaec_m7Eq5sjI01TOSJt7GwH2tad6gr54UlSGQ1gG-iagqorijkxZwrulEtm-Z9T4C5tuKMrbbhLGw6sK1I87x7We0Y_hZICRn401tr0SltbuE9Xjkoq50jZMUYqrYwxE65uTPGJX_4Ds7mg-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730084064</pqid></control><display><type>article</type><title>Magnetic resonance imaging and 3D simulation studies of biofilm accumulation and cleaning on reverse osmosis membranes</title><source>Elsevier ScienceDirect Journals Collection</source><creator>Creber, S.A. ; Pintelon, T.R.R. ; Graf von der Schulenburg, D.A.W. ; Vrouwenvelder, J.S. ; van Loosdrecht, M.C.M. ; Johns, M.L.</creator><creatorcontrib>Creber, S.A. ; Pintelon, T.R.R. ; Graf von der Schulenburg, D.A.W. ; Vrouwenvelder, J.S. ; van Loosdrecht, M.C.M. ; Johns, M.L.</creatorcontrib><description>▶ Summary of MRI and LB Studies of ROM biofouling. ▶ Simulation of cleaning biofouled ROMs. ▶ Effect of age on cleaning of bio-fouled ROMs quantified.
Reverse osmosis (RO) is one of the multiple pressure-driven membrane separation processes used primarily for the production of high purity water for various industries, including food processing. Biofilm growth in the spiral-wound membrane module, commonly referred to as biofouling, reduces the efficiency to produce water. Biofilm accumulation and removal using chemical cleaning on RO membranes were studied using magnetic resonance imaging (MRI) techniques. Additionally, a previously validated biofilm simulation model, which is based on a lattice Boltzmann platform, was modified to account for cleaning operations. The spatial and velocity MRI experimental results captured biofilm distribution and water flow within the fouled membrane modules and subsequent changes in the biofilm distribution and water flow due to cleaning. Cleaning was simulated by accounting for reductions in the biofilm cohesive strength in the numerical model. Qualitative and quantitative comparisons between the experimental and simulated images showed good agreement.</description><identifier>ISSN: 0960-3085</identifier><identifier>EISSN: 1744-3571</identifier><identifier>DOI: 10.1016/j.fbp.2010.08.010</identifier><language>eng</language><publisher>Rugby: Elsevier B.V</publisher><subject>Biofilms ; Biofouling ; Biological and medical sciences ; Cleaning ; Computer simulation ; Food industries ; Fundamental and applied biological sciences. Psychology ; General aspects ; Hygiene and safety ; Lattice Boltzmann ; Magnetic resonance imaging ; Membranes ; Modules ; Nanofiltration ; Reverse osmosis ; Reverse osmosis membrane ; S-MFS ; Simulation ; Water flow</subject><ispartof>Food and bioproducts processing, 2010-12, Vol.88 (4), p.401-408</ispartof><rights>2010 The Institution of Chemical Engineers</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-55792c83f7280f92fdd8e7bc52476cfcd1c4351aa79709bf4b2d7ba4f6ac8e803</citedby><cites>FETCH-LOGICAL-c392t-55792c83f7280f92fdd8e7bc52476cfcd1c4351aa79709bf4b2d7ba4f6ac8e803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960308510000891$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23791388$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Creber, S.A.</creatorcontrib><creatorcontrib>Pintelon, T.R.R.</creatorcontrib><creatorcontrib>Graf von der Schulenburg, D.A.W.</creatorcontrib><creatorcontrib>Vrouwenvelder, J.S.</creatorcontrib><creatorcontrib>van Loosdrecht, M.C.M.</creatorcontrib><creatorcontrib>Johns, M.L.</creatorcontrib><title>Magnetic resonance imaging and 3D simulation studies of biofilm accumulation and cleaning on reverse osmosis membranes</title><title>Food and bioproducts processing</title><description>▶ Summary of MRI and LB Studies of ROM biofouling. ▶ Simulation of cleaning biofouled ROMs. ▶ Effect of age on cleaning of bio-fouled ROMs quantified.
Reverse osmosis (RO) is one of the multiple pressure-driven membrane separation processes used primarily for the production of high purity water for various industries, including food processing. Biofilm growth in the spiral-wound membrane module, commonly referred to as biofouling, reduces the efficiency to produce water. Biofilm accumulation and removal using chemical cleaning on RO membranes were studied using magnetic resonance imaging (MRI) techniques. Additionally, a previously validated biofilm simulation model, which is based on a lattice Boltzmann platform, was modified to account for cleaning operations. The spatial and velocity MRI experimental results captured biofilm distribution and water flow within the fouled membrane modules and subsequent changes in the biofilm distribution and water flow due to cleaning. Cleaning was simulated by accounting for reductions in the biofilm cohesive strength in the numerical model. Qualitative and quantitative comparisons between the experimental and simulated images showed good agreement.</description><subject>Biofilms</subject><subject>Biofouling</subject><subject>Biological and medical sciences</subject><subject>Cleaning</subject><subject>Computer simulation</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Hygiene and safety</subject><subject>Lattice Boltzmann</subject><subject>Magnetic resonance imaging</subject><subject>Membranes</subject><subject>Modules</subject><subject>Nanofiltration</subject><subject>Reverse osmosis</subject><subject>Reverse osmosis membrane</subject><subject>S-MFS</subject><subject>Simulation</subject><subject>Water flow</subject><issn>0960-3085</issn><issn>1744-3571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kc2O1DAQhC0EEsPCA3DzBcElQztOYkec0C5_0iIucLacTnvkURIP7mQk3h6PZrXHPZVa_qrdqhLirYK9AtV9PO7DcNrXUGaw-yLPxE6Zpql0a9RzsYO-g0qDbV-KV8xHAFBWtTtx_ukPC60RZSZOi1-QZJz9IS4H6ZdR6jvJcd4mv8a0SF63MRLLFOQQU4jTLD3i9vh-ceBEfrnYy5zpTJlJJp4TR5YzzUP2C_Fr8SL4ienNg96IP1-__L79Xt3_-vbj9vN9hbqv16ptTV-j1cHUFkJfh3G0ZAZs68Z0GHBU2OhWeW96A_0QmqEezeCb0Hm0ZEHfiPfXvaec_m7Eq5sjI01TOSJt7GwH2tad6gr54UlSGQ1gG-iagqorijkxZwrulEtm-Z9T4C5tuKMrbbhLGw6sK1I87x7We0Y_hZICRn401tr0SltbuE9Xjkoq50jZMUYqrYwxE65uTPGJX_4Ds7mg-g</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Creber, S.A.</creator><creator>Pintelon, T.R.R.</creator><creator>Graf von der Schulenburg, D.A.W.</creator><creator>Vrouwenvelder, J.S.</creator><creator>van Loosdrecht, M.C.M.</creator><creator>Johns, M.L.</creator><general>Elsevier B.V</general><general>Institution of Chemical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20101201</creationdate><title>Magnetic resonance imaging and 3D simulation studies of biofilm accumulation and cleaning on reverse osmosis membranes</title><author>Creber, S.A. ; Pintelon, T.R.R. ; Graf von der Schulenburg, D.A.W. ; Vrouwenvelder, J.S. ; van Loosdrecht, M.C.M. ; Johns, M.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-55792c83f7280f92fdd8e7bc52476cfcd1c4351aa79709bf4b2d7ba4f6ac8e803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biofilms</topic><topic>Biofouling</topic><topic>Biological and medical sciences</topic><topic>Cleaning</topic><topic>Computer simulation</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Hygiene and safety</topic><topic>Lattice Boltzmann</topic><topic>Magnetic resonance imaging</topic><topic>Membranes</topic><topic>Modules</topic><topic>Nanofiltration</topic><topic>Reverse osmosis</topic><topic>Reverse osmosis membrane</topic><topic>S-MFS</topic><topic>Simulation</topic><topic>Water flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creber, S.A.</creatorcontrib><creatorcontrib>Pintelon, T.R.R.</creatorcontrib><creatorcontrib>Graf von der Schulenburg, D.A.W.</creatorcontrib><creatorcontrib>Vrouwenvelder, J.S.</creatorcontrib><creatorcontrib>van Loosdrecht, M.C.M.</creatorcontrib><creatorcontrib>Johns, M.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Food and bioproducts processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Creber, S.A.</au><au>Pintelon, T.R.R.</au><au>Graf von der Schulenburg, D.A.W.</au><au>Vrouwenvelder, J.S.</au><au>van Loosdrecht, M.C.M.</au><au>Johns, M.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic resonance imaging and 3D simulation studies of biofilm accumulation and cleaning on reverse osmosis membranes</atitle><jtitle>Food and bioproducts processing</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>88</volume><issue>4</issue><spage>401</spage><epage>408</epage><pages>401-408</pages><issn>0960-3085</issn><eissn>1744-3571</eissn><abstract>▶ Summary of MRI and LB Studies of ROM biofouling. ▶ Simulation of cleaning biofouled ROMs. ▶ Effect of age on cleaning of bio-fouled ROMs quantified.
Reverse osmosis (RO) is one of the multiple pressure-driven membrane separation processes used primarily for the production of high purity water for various industries, including food processing. Biofilm growth in the spiral-wound membrane module, commonly referred to as biofouling, reduces the efficiency to produce water. Biofilm accumulation and removal using chemical cleaning on RO membranes were studied using magnetic resonance imaging (MRI) techniques. Additionally, a previously validated biofilm simulation model, which is based on a lattice Boltzmann platform, was modified to account for cleaning operations. The spatial and velocity MRI experimental results captured biofilm distribution and water flow within the fouled membrane modules and subsequent changes in the biofilm distribution and water flow due to cleaning. Cleaning was simulated by accounting for reductions in the biofilm cohesive strength in the numerical model. Qualitative and quantitative comparisons between the experimental and simulated images showed good agreement.</abstract><cop>Rugby</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fbp.2010.08.010</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-3085 |
ispartof | Food and bioproducts processing, 2010-12, Vol.88 (4), p.401-408 |
issn | 0960-3085 1744-3571 |
language | eng |
recordid | cdi_proquest_miscellaneous_860382616 |
source | Elsevier ScienceDirect Journals Collection |
subjects | Biofilms Biofouling Biological and medical sciences Cleaning Computer simulation Food industries Fundamental and applied biological sciences. Psychology General aspects Hygiene and safety Lattice Boltzmann Magnetic resonance imaging Membranes Modules Nanofiltration Reverse osmosis Reverse osmosis membrane S-MFS Simulation Water flow |
title | Magnetic resonance imaging and 3D simulation studies of biofilm accumulation and cleaning on reverse osmosis membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20resonance%20imaging%20and%203D%20simulation%20studies%20of%20biofilm%20accumulation%20and%20cleaning%20on%20reverse%20osmosis%20membranes&rft.jtitle=Food%20and%20bioproducts%20processing&rft.au=Creber,%20S.A.&rft.date=2010-12-01&rft.volume=88&rft.issue=4&rft.spage=401&rft.epage=408&rft.pages=401-408&rft.issn=0960-3085&rft.eissn=1744-3571&rft_id=info:doi/10.1016/j.fbp.2010.08.010&rft_dat=%3Cproquest_cross%3E860382616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730084064&rft_id=info:pmid/&rft_els_id=S0960308510000891&rfr_iscdi=true |