Neuroprotective effects of icariin on corticosterone-induced apoptosis in primary cultured rat hippocampal neurons

Abstract Neurons are damaged following prolonged exposure to high concentrations of corticosterone, particularly during chronic inflammatory and immune diseases. One of the main mechanisms underlying neuronal injury is apoptosis. In the present study the neuroprotective effects of icariin, an active...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2011-02, Vol.1375, p.59-67
Hauptverfasser: Liu, Baojun, Zhang, Hongying, Xu, Changqing, Yang, Guang, Tao, Jiang, Huang, Jianhua, Wu, Jinfeng, Duan, Xiaohong, Cao, Yuxue, Dong, Jingcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue
container_start_page 59
container_title Brain research
container_volume 1375
creator Liu, Baojun
Zhang, Hongying
Xu, Changqing
Yang, Guang
Tao, Jiang
Huang, Jianhua
Wu, Jinfeng
Duan, Xiaohong
Cao, Yuxue
Dong, Jingcheng
description Abstract Neurons are damaged following prolonged exposure to high concentrations of corticosterone, particularly during chronic inflammatory and immune diseases. One of the main mechanisms underlying neuronal injury is apoptosis. In the present study the neuroprotective effects of icariin, an active natural ingredient from the Chinese plant Epimedium sagittatum maxim against corticosterone-induced apoptosis were examined in primary cultured rat hippocampal neuronal cells. Pre-treatment of neuronal cells with icariin suppressed corticosterone-induced cytotoxicity in a dose-dependent manner. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end-labeling assay (TUNEL) labeling demonstrated that icariin significantly reduced TUNEL-positive cell numbers induced by exposure of cultured neurons to corticosterone. Moreover, icariin markedly inhibited corticosterone-induced mitochondrial dysfunction, including improved mitochondrial membrane potential and inhibition of caspase-3 activation. Using western blot analysis, corticosterone activated p38MAPK, extracellular regulated kinase 1/2(ERK1/2) ,and c- jun N-terminal protein kinase 1(JNK1) ,while icariin blocked p38 MAPK, but not JNK1 or ERK1/2. Pharmacological approaches showed that the activation of p38MAPK plays a critical role in corticosterone-induced mitochondrial dysfunction and apoptosis. Taken together, the present results suggest that the protective effects of icariin on apoptosis in hippocampal neuronal cells are potentially mediated through blockade of p38 MAPK phosphorylation.
doi_str_mv 10.1016/j.brainres.2010.12.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_860379521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000689931002740X</els_id><sourcerecordid>850559370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-f5ac56e0ee9595476e2efd30455d41b0e950e9679adcc44e8a31a045f79c54ee3</originalsourceid><addsrcrecordid>eNqFkktv1DAQgC1ERbeFv1B8QZyy-BEn8QVRVVCQqvbQVuJmeZ0xeMnawU4q9d8z0W5B4lJFVvz4xmP7G0LOOFtzxpsP2_Um2xAzlLVgy6RYMyVfkBXvWlE1omYvyYox1lSd1vKYnJSyxaGUmr0ix4LzTuC3Ivka5pzGnCZwU3gACt5jr9DkaXA2hxBpitSlPAWXygQ5RahC7GcHPbVjGqdUQqGIjTnsbH6kbh6mOeNqthP9GcYxObsb7UDjkiqW1-TI26HAm8P_lNx_-Xx38bW6urn8dnF-VTnV1lPllXWqAQaglVZ124AA30tWK9XXfMNwGlvTats7V9fQWcktrvpWO1UDyFPyfr8v3u73DGUyu1AcDIONkOZiuobJVivBnycVU0rLliHZ7EmXUykZvDnc2nBmFjFma57EmEWM4cKgGAw8O6SYNzvo_4Y9mUDg3QGwxdnBZxtdKP84qbngajnB2z3nbTL2R0bm_hYzKbSrpZANEp_2BODjPgTIprgAEX2FjGpNn8Lzp_343xZuCBHrYfgFj1C2ac4R1RluCgaY26XQljrjjIm2Zt_lH2Jg0C8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>850559370</pqid></control><display><type>article</type><title>Neuroprotective effects of icariin on corticosterone-induced apoptosis in primary cultured rat hippocampal neurons</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Liu, Baojun ; Zhang, Hongying ; Xu, Changqing ; Yang, Guang ; Tao, Jiang ; Huang, Jianhua ; Wu, Jinfeng ; Duan, Xiaohong ; Cao, Yuxue ; Dong, Jingcheng</creator><creatorcontrib>Liu, Baojun ; Zhang, Hongying ; Xu, Changqing ; Yang, Guang ; Tao, Jiang ; Huang, Jianhua ; Wu, Jinfeng ; Duan, Xiaohong ; Cao, Yuxue ; Dong, Jingcheng</creatorcontrib><description>Abstract Neurons are damaged following prolonged exposure to high concentrations of corticosterone, particularly during chronic inflammatory and immune diseases. One of the main mechanisms underlying neuronal injury is apoptosis. In the present study the neuroprotective effects of icariin, an active natural ingredient from the Chinese plant Epimedium sagittatum maxim against corticosterone-induced apoptosis were examined in primary cultured rat hippocampal neuronal cells. Pre-treatment of neuronal cells with icariin suppressed corticosterone-induced cytotoxicity in a dose-dependent manner. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end-labeling assay (TUNEL) labeling demonstrated that icariin significantly reduced TUNEL-positive cell numbers induced by exposure of cultured neurons to corticosterone. Moreover, icariin markedly inhibited corticosterone-induced mitochondrial dysfunction, including improved mitochondrial membrane potential and inhibition of caspase-3 activation. Using western blot analysis, corticosterone activated p38MAPK, extracellular regulated kinase 1/2(ERK1/2) ,and c- jun N-terminal protein kinase 1(JNK1) ,while icariin blocked p38 MAPK, but not JNK1 or ERK1/2. Pharmacological approaches showed that the activation of p38MAPK plays a critical role in corticosterone-induced mitochondrial dysfunction and apoptosis. Taken together, the present results suggest that the protective effects of icariin on apoptosis in hippocampal neuronal cells are potentially mediated through blockade of p38 MAPK phosphorylation.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/j.brainres.2010.12.053</identifier><identifier>PMID: 21182828</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animals ; Animals, Newborn ; Apoptosis ; Apoptosis - drug effects ; Biological and medical sciences ; brain ; Caspase 3 - metabolism ; Caspase Inhibitors ; caspase-3 ; Cells, Cultured ; Corticosterone ; Corticosterone - antagonists &amp; inhibitors ; Corticosterone - toxicity ; cytotoxicity ; Dose-Response Relationship, Drug ; Enzyme Activation - drug effects ; Enzyme Inhibitors - pharmacology ; Epimedium ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Flavonoids - antagonists &amp; inhibitors ; Flavonoids - pharmacology ; Hippocampus ; Hippocampus - cytology ; Hippocampus - drug effects ; Icariin ; Imidazoles - pharmacology ; In Situ Nick-End Labeling ; ingredients ; L-Lactate Dehydrogenase - metabolism ; MAPK pathway ; Medical sciences ; membrane potential ; Membrane Potentials - drug effects ; Mitochondria - drug effects ; Mitochondria - metabolism ; mitochondrial membrane ; Mitochondrial Membranes - drug effects ; mitogen-activated protein kinase ; Mitogen-Activated Protein Kinase 8 - metabolism ; Neurites - drug effects ; Neurites - ultrastructure ; Neurology ; neurons ; Neurons - drug effects ; Neurons - ultrastructure ; Neuropharmacology ; Neuroprotective agent ; Neuroprotective Agents ; neuroprotective effect ; p38 Mitogen-Activated Protein Kinases - antagonists &amp; inhibitors ; Pharmacology. Drug treatments ; Phosphorylation ; pretreatment ; Pyridines - pharmacology ; Rats ; Rats, Sprague-Dawley ; Western blotting</subject><ispartof>Brain research, 2011-02, Vol.1375, p.59-67</ispartof><rights>Elsevier B.V.</rights><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-f5ac56e0ee9595476e2efd30455d41b0e950e9679adcc44e8a31a045f79c54ee3</citedby><cites>FETCH-LOGICAL-c574t-f5ac56e0ee9595476e2efd30455d41b0e950e9679adcc44e8a31a045f79c54ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000689931002740X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23912150$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21182828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Baojun</creatorcontrib><creatorcontrib>Zhang, Hongying</creatorcontrib><creatorcontrib>Xu, Changqing</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Tao, Jiang</creatorcontrib><creatorcontrib>Huang, Jianhua</creatorcontrib><creatorcontrib>Wu, Jinfeng</creatorcontrib><creatorcontrib>Duan, Xiaohong</creatorcontrib><creatorcontrib>Cao, Yuxue</creatorcontrib><creatorcontrib>Dong, Jingcheng</creatorcontrib><title>Neuroprotective effects of icariin on corticosterone-induced apoptosis in primary cultured rat hippocampal neurons</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>Abstract Neurons are damaged following prolonged exposure to high concentrations of corticosterone, particularly during chronic inflammatory and immune diseases. One of the main mechanisms underlying neuronal injury is apoptosis. In the present study the neuroprotective effects of icariin, an active natural ingredient from the Chinese plant Epimedium sagittatum maxim against corticosterone-induced apoptosis were examined in primary cultured rat hippocampal neuronal cells. Pre-treatment of neuronal cells with icariin suppressed corticosterone-induced cytotoxicity in a dose-dependent manner. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end-labeling assay (TUNEL) labeling demonstrated that icariin significantly reduced TUNEL-positive cell numbers induced by exposure of cultured neurons to corticosterone. Moreover, icariin markedly inhibited corticosterone-induced mitochondrial dysfunction, including improved mitochondrial membrane potential and inhibition of caspase-3 activation. Using western blot analysis, corticosterone activated p38MAPK, extracellular regulated kinase 1/2(ERK1/2) ,and c- jun N-terminal protein kinase 1(JNK1) ,while icariin blocked p38 MAPK, but not JNK1 or ERK1/2. Pharmacological approaches showed that the activation of p38MAPK plays a critical role in corticosterone-induced mitochondrial dysfunction and apoptosis. Taken together, the present results suggest that the protective effects of icariin on apoptosis in hippocampal neuronal cells are potentially mediated through blockade of p38 MAPK phosphorylation.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biological and medical sciences</subject><subject>brain</subject><subject>Caspase 3 - metabolism</subject><subject>Caspase Inhibitors</subject><subject>caspase-3</subject><subject>Cells, Cultured</subject><subject>Corticosterone</subject><subject>Corticosterone - antagonists &amp; inhibitors</subject><subject>Corticosterone - toxicity</subject><subject>cytotoxicity</subject><subject>Dose-Response Relationship, Drug</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Epimedium</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Flavonoids - antagonists &amp; inhibitors</subject><subject>Flavonoids - pharmacology</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - drug effects</subject><subject>Icariin</subject><subject>Imidazoles - pharmacology</subject><subject>In Situ Nick-End Labeling</subject><subject>ingredients</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>MAPK pathway</subject><subject>Medical sciences</subject><subject>membrane potential</subject><subject>Membrane Potentials - drug effects</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial membrane</subject><subject>Mitochondrial Membranes - drug effects</subject><subject>mitogen-activated protein kinase</subject><subject>Mitogen-Activated Protein Kinase 8 - metabolism</subject><subject>Neurites - drug effects</subject><subject>Neurites - ultrastructure</subject><subject>Neurology</subject><subject>neurons</subject><subject>Neurons - drug effects</subject><subject>Neurons - ultrastructure</subject><subject>Neuropharmacology</subject><subject>Neuroprotective agent</subject><subject>Neuroprotective Agents</subject><subject>neuroprotective effect</subject><subject>p38 Mitogen-Activated Protein Kinases - antagonists &amp; inhibitors</subject><subject>Pharmacology. Drug treatments</subject><subject>Phosphorylation</subject><subject>pretreatment</subject><subject>Pyridines - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Western blotting</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktv1DAQgC1ERbeFv1B8QZyy-BEn8QVRVVCQqvbQVuJmeZ0xeMnawU4q9d8z0W5B4lJFVvz4xmP7G0LOOFtzxpsP2_Um2xAzlLVgy6RYMyVfkBXvWlE1omYvyYox1lSd1vKYnJSyxaGUmr0ix4LzTuC3Ivka5pzGnCZwU3gACt5jr9DkaXA2hxBpitSlPAWXygQ5RahC7GcHPbVjGqdUQqGIjTnsbH6kbh6mOeNqthP9GcYxObsb7UDjkiqW1-TI26HAm8P_lNx_-Xx38bW6urn8dnF-VTnV1lPllXWqAQaglVZ124AA30tWK9XXfMNwGlvTats7V9fQWcktrvpWO1UDyFPyfr8v3u73DGUyu1AcDIONkOZiuobJVivBnycVU0rLliHZ7EmXUykZvDnc2nBmFjFma57EmEWM4cKgGAw8O6SYNzvo_4Y9mUDg3QGwxdnBZxtdKP84qbngajnB2z3nbTL2R0bm_hYzKbSrpZANEp_2BODjPgTIprgAEX2FjGpNn8Lzp_343xZuCBHrYfgFj1C2ac4R1RluCgaY26XQljrjjIm2Zt_lH2Jg0C8</recordid><startdate>20110223</startdate><enddate>20110223</enddate><creator>Liu, Baojun</creator><creator>Zhang, Hongying</creator><creator>Xu, Changqing</creator><creator>Yang, Guang</creator><creator>Tao, Jiang</creator><creator>Huang, Jianhua</creator><creator>Wu, Jinfeng</creator><creator>Duan, Xiaohong</creator><creator>Cao, Yuxue</creator><creator>Dong, Jingcheng</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>20110223</creationdate><title>Neuroprotective effects of icariin on corticosterone-induced apoptosis in primary cultured rat hippocampal neurons</title><author>Liu, Baojun ; Zhang, Hongying ; Xu, Changqing ; Yang, Guang ; Tao, Jiang ; Huang, Jianhua ; Wu, Jinfeng ; Duan, Xiaohong ; Cao, Yuxue ; Dong, Jingcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-f5ac56e0ee9595476e2efd30455d41b0e950e9679adcc44e8a31a045f79c54ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biological and medical sciences</topic><topic>brain</topic><topic>Caspase 3 - metabolism</topic><topic>Caspase Inhibitors</topic><topic>caspase-3</topic><topic>Cells, Cultured</topic><topic>Corticosterone</topic><topic>Corticosterone - antagonists &amp; inhibitors</topic><topic>Corticosterone - toxicity</topic><topic>cytotoxicity</topic><topic>Dose-Response Relationship, Drug</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Epimedium</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Flavonoids - antagonists &amp; inhibitors</topic><topic>Flavonoids - pharmacology</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - drug effects</topic><topic>Icariin</topic><topic>Imidazoles - pharmacology</topic><topic>In Situ Nick-End Labeling</topic><topic>ingredients</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>MAPK pathway</topic><topic>Medical sciences</topic><topic>membrane potential</topic><topic>Membrane Potentials - drug effects</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial membrane</topic><topic>Mitochondrial Membranes - drug effects</topic><topic>mitogen-activated protein kinase</topic><topic>Mitogen-Activated Protein Kinase 8 - metabolism</topic><topic>Neurites - drug effects</topic><topic>Neurites - ultrastructure</topic><topic>Neurology</topic><topic>neurons</topic><topic>Neurons - drug effects</topic><topic>Neurons - ultrastructure</topic><topic>Neuropharmacology</topic><topic>Neuroprotective agent</topic><topic>Neuroprotective Agents</topic><topic>neuroprotective effect</topic><topic>p38 Mitogen-Activated Protein Kinases - antagonists &amp; inhibitors</topic><topic>Pharmacology. Drug treatments</topic><topic>Phosphorylation</topic><topic>pretreatment</topic><topic>Pyridines - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Baojun</creatorcontrib><creatorcontrib>Zhang, Hongying</creatorcontrib><creatorcontrib>Xu, Changqing</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Tao, Jiang</creatorcontrib><creatorcontrib>Huang, Jianhua</creatorcontrib><creatorcontrib>Wu, Jinfeng</creatorcontrib><creatorcontrib>Duan, Xiaohong</creatorcontrib><creatorcontrib>Cao, Yuxue</creatorcontrib><creatorcontrib>Dong, Jingcheng</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Baojun</au><au>Zhang, Hongying</au><au>Xu, Changqing</au><au>Yang, Guang</au><au>Tao, Jiang</au><au>Huang, Jianhua</au><au>Wu, Jinfeng</au><au>Duan, Xiaohong</au><au>Cao, Yuxue</au><au>Dong, Jingcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuroprotective effects of icariin on corticosterone-induced apoptosis in primary cultured rat hippocampal neurons</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>2011-02-23</date><risdate>2011</risdate><volume>1375</volume><spage>59</spage><epage>67</epage><pages>59-67</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>Abstract Neurons are damaged following prolonged exposure to high concentrations of corticosterone, particularly during chronic inflammatory and immune diseases. One of the main mechanisms underlying neuronal injury is apoptosis. In the present study the neuroprotective effects of icariin, an active natural ingredient from the Chinese plant Epimedium sagittatum maxim against corticosterone-induced apoptosis were examined in primary cultured rat hippocampal neuronal cells. Pre-treatment of neuronal cells with icariin suppressed corticosterone-induced cytotoxicity in a dose-dependent manner. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end-labeling assay (TUNEL) labeling demonstrated that icariin significantly reduced TUNEL-positive cell numbers induced by exposure of cultured neurons to corticosterone. Moreover, icariin markedly inhibited corticosterone-induced mitochondrial dysfunction, including improved mitochondrial membrane potential and inhibition of caspase-3 activation. Using western blot analysis, corticosterone activated p38MAPK, extracellular regulated kinase 1/2(ERK1/2) ,and c- jun N-terminal protein kinase 1(JNK1) ,while icariin blocked p38 MAPK, but not JNK1 or ERK1/2. Pharmacological approaches showed that the activation of p38MAPK plays a critical role in corticosterone-induced mitochondrial dysfunction and apoptosis. Taken together, the present results suggest that the protective effects of icariin on apoptosis in hippocampal neuronal cells are potentially mediated through blockade of p38 MAPK phosphorylation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>21182828</pmid><doi>10.1016/j.brainres.2010.12.053</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-8993
ispartof Brain research, 2011-02, Vol.1375, p.59-67
issn 0006-8993
1872-6240
language eng
recordid cdi_proquest_miscellaneous_860379521
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Animals, Newborn
Apoptosis
Apoptosis - drug effects
Biological and medical sciences
brain
Caspase 3 - metabolism
Caspase Inhibitors
caspase-3
Cells, Cultured
Corticosterone
Corticosterone - antagonists & inhibitors
Corticosterone - toxicity
cytotoxicity
Dose-Response Relationship, Drug
Enzyme Activation - drug effects
Enzyme Inhibitors - pharmacology
Epimedium
Extracellular Signal-Regulated MAP Kinases - metabolism
Flavonoids - antagonists & inhibitors
Flavonoids - pharmacology
Hippocampus
Hippocampus - cytology
Hippocampus - drug effects
Icariin
Imidazoles - pharmacology
In Situ Nick-End Labeling
ingredients
L-Lactate Dehydrogenase - metabolism
MAPK pathway
Medical sciences
membrane potential
Membrane Potentials - drug effects
Mitochondria - drug effects
Mitochondria - metabolism
mitochondrial membrane
Mitochondrial Membranes - drug effects
mitogen-activated protein kinase
Mitogen-Activated Protein Kinase 8 - metabolism
Neurites - drug effects
Neurites - ultrastructure
Neurology
neurons
Neurons - drug effects
Neurons - ultrastructure
Neuropharmacology
Neuroprotective agent
Neuroprotective Agents
neuroprotective effect
p38 Mitogen-Activated Protein Kinases - antagonists & inhibitors
Pharmacology. Drug treatments
Phosphorylation
pretreatment
Pyridines - pharmacology
Rats
Rats, Sprague-Dawley
Western blotting
title Neuroprotective effects of icariin on corticosterone-induced apoptosis in primary cultured rat hippocampal neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuroprotective%20effects%20of%20icariin%20on%20corticosterone-induced%20apoptosis%20in%20primary%20cultured%20rat%20hippocampal%20neurons&rft.jtitle=Brain%20research&rft.au=Liu,%20Baojun&rft.date=2011-02-23&rft.volume=1375&rft.spage=59&rft.epage=67&rft.pages=59-67&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/j.brainres.2010.12.053&rft_dat=%3Cproquest_cross%3E850559370%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=850559370&rft_id=info:pmid/21182828&rft_els_id=S000689931002740X&rfr_iscdi=true