Microbial and geochemical features suggest iron redox cycling within bacteriogenic iron oxide-rich sediments
The geochemistry, mineralogy and microbiology of bacteriogenic iron oxides (BIOS) deposited at a circumneutral groundwater seep were examined to evaluate the biogeochemical controls on the redox cycle of iron in such environments. X-ray diffraction and extended X-ray absorption fine structure (EXAFS...
Gespeichert in:
Veröffentlicht in: | Chemical geology 2011-02, Vol.281 (1-2), p.41-51 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 1-2 |
container_start_page | 41 |
container_title | Chemical geology |
container_volume | 281 |
creator | Gault, Andrew G. Ibrahim, Alexandre Langley, Sean Renaud, Robert Takahashi, Yoshio Boothman, Christopher Lloyd, Jonathan R. Clark, Ian D. Ferris, F. Grant Fortin, Danielle |
description | The geochemistry, mineralogy and microbiology of bacteriogenic iron oxides (BIOS) deposited at a circumneutral groundwater seep were examined to evaluate the biogeochemical controls on the redox cycle of iron in such environments. X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy showed that 2-line ferrihydrite dominated (60–70%) the BIOS mineralogy, with more crystalline lepidocrocite and goethite phases comprising the remainder, likely the product of Fe(II)-induced dissolution–reprecipitation pathways. Subsurface porewater profiles displayed an increase in dissolved ( |
doi_str_mv | 10.1016/j.chemgeo.2010.11.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_860379282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009254110004304</els_id><sourcerecordid>860379282</sourcerecordid><originalsourceid>FETCH-LOGICAL-a506t-e64300a46bf9d324ce38176442ef41a699ad7bd0858cba558f8cd3fe236ffc883</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EEkvpT0D4ximLP2LHOSFUUUAq4tD2bDn2ODurbFzsLG3_PY7SOydrrGfemXkI-cDZnjOuPx_3_gCnEdJesPWP75noXpEdN51otJH6NdkxxvpGqJa_Je9KOdaSS6V2ZPqFPqcB3UTdHGgNWbPQ1zqCW84ZCi3ncYSyUMxpphlCeqL-2U84j_QRlwPOdHB-gYxphBn9xqUnDNBk9AdaIOAJ5qW8J2-imwpcvrwX5P76293Vj-bm9_efV19vGqeYXhrQrWTMtXqIfZCi9SAN73TbCogtd7rvXeiGwIwyfnBKmWh8kBGE1DF6Y-QF-bTlPuT051xXtycsHqbJzZDOxRrNZNcLIyqpNrJKKCVDtA8ZTy4_W87sKtce7Ytcu8q1nNsqt_Z93PqiS9aNGYu9v62AqmJ1p9ma_GUjoB76FyHb4hFmX11k8IsNCf8z4x-AGpEL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860379282</pqid></control><display><type>article</type><title>Microbial and geochemical features suggest iron redox cycling within bacteriogenic iron oxide-rich sediments</title><source>Elsevier ScienceDirect Journals</source><creator>Gault, Andrew G. ; Ibrahim, Alexandre ; Langley, Sean ; Renaud, Robert ; Takahashi, Yoshio ; Boothman, Christopher ; Lloyd, Jonathan R. ; Clark, Ian D. ; Ferris, F. Grant ; Fortin, Danielle</creator><creatorcontrib>Gault, Andrew G. ; Ibrahim, Alexandre ; Langley, Sean ; Renaud, Robert ; Takahashi, Yoshio ; Boothman, Christopher ; Lloyd, Jonathan R. ; Clark, Ian D. ; Ferris, F. Grant ; Fortin, Danielle</creatorcontrib><description>The geochemistry, mineralogy and microbiology of bacteriogenic iron oxides (BIOS) deposited at a circumneutral groundwater seep were examined to evaluate the biogeochemical controls on the redox cycle of iron in such environments. X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy showed that 2-line ferrihydrite dominated (60–70%) the BIOS mineralogy, with more crystalline lepidocrocite and goethite phases comprising the remainder, likely the product of Fe(II)-induced dissolution–reprecipitation pathways. Subsurface porewater profiles displayed an increase in dissolved (<0.2μm) equilibrium concentrations of Fe(II), also reflected in peaks in HCl-extractable sedimentary Fe(II) at depth, indicative of biological iron reduction. Interestingly EXAFS analysis of sediments collected from such depths revealed little mineralogical change from the surficial BIOS. Dissolved concentrations of Fe(III), likely present as nanoparticulates or organic complexes, also rose with depth. Scanning electron microscopy images of the surface BIOS samples showed a proliferation of sheath structures characteristic of Fe(II)-oxidizing Leptothrix spp. A 16S rRNA clone library obtained from the surficial BIOS included microorganisms closely associated to known Fe(II)-oxidizing (Gallionella spp., Sideroxydans spp.) and Fe(III)-reducing (Rhodoferax ferrireducens and Geothrix fermentans) bacteria. Analysis of subsurface sediment collected from an Fe(III)-reducing horizon revealed a drop in the proportion of β-Proteobacteria, which hosts numerous Fe(II)-oxidizing genera, and a rise in the δ-Proteobacteria, home to anaerobic metal-reducing prokaryotes. The recognition of clones with close identity to bacteria intimately involved in complementary iron redox transformations in the same surficial BIOS sediment suggests that microbial oxidation and reduction of iron may be tightly coupled in this, and other, shallow sedimentary environments.
►We have examined the biogeochemistry of bacteriogenic iron oxides (BIOS) ►BIOS mineralogy shows minimal change between oxidizing and reducing sediment depths ►Fe(II)-oxidizing and Fe(III)-reducing bacteria identified in surficial BIOS sediment ►Closely coupled microbial iron redox cycle exists in surface BIOS-rich sediments</description><identifier>ISSN: 0009-2541</identifier><identifier>EISSN: 1872-6836</identifier><identifier>DOI: 10.1016/j.chemgeo.2010.11.027</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>absorption ; Bacteria ; BIOS ; Circumneutral iron oxidation ; clones ; delta-Proteobacteria ; Dissolution ; Fe(II)-oxidizing bacteria ; Fe(III)-reducing bacteria ; ferrihydrite ; Gallionella ; geochemistry ; Geothrix fermentans ; goethite ; groundwater ; hosts ; iron ; Iron oxides ; lepidocrocite ; Microorganisms ; Mineralogy ; Nanostructure ; oxidation ; prokaryotic cells ; Redox cycling ; Rhodoferax ; ribosomal RNA ; scanning electron microscopy ; Sediments ; spectroscopy ; X-radiation ; X-ray diffraction</subject><ispartof>Chemical geology, 2011-02, Vol.281 (1-2), p.41-51</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a506t-e64300a46bf9d324ce38176442ef41a699ad7bd0858cba558f8cd3fe236ffc883</citedby><cites>FETCH-LOGICAL-a506t-e64300a46bf9d324ce38176442ef41a699ad7bd0858cba558f8cd3fe236ffc883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0009254110004304$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gault, Andrew G.</creatorcontrib><creatorcontrib>Ibrahim, Alexandre</creatorcontrib><creatorcontrib>Langley, Sean</creatorcontrib><creatorcontrib>Renaud, Robert</creatorcontrib><creatorcontrib>Takahashi, Yoshio</creatorcontrib><creatorcontrib>Boothman, Christopher</creatorcontrib><creatorcontrib>Lloyd, Jonathan R.</creatorcontrib><creatorcontrib>Clark, Ian D.</creatorcontrib><creatorcontrib>Ferris, F. Grant</creatorcontrib><creatorcontrib>Fortin, Danielle</creatorcontrib><title>Microbial and geochemical features suggest iron redox cycling within bacteriogenic iron oxide-rich sediments</title><title>Chemical geology</title><description>The geochemistry, mineralogy and microbiology of bacteriogenic iron oxides (BIOS) deposited at a circumneutral groundwater seep were examined to evaluate the biogeochemical controls on the redox cycle of iron in such environments. X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy showed that 2-line ferrihydrite dominated (60–70%) the BIOS mineralogy, with more crystalline lepidocrocite and goethite phases comprising the remainder, likely the product of Fe(II)-induced dissolution–reprecipitation pathways. Subsurface porewater profiles displayed an increase in dissolved (<0.2μm) equilibrium concentrations of Fe(II), also reflected in peaks in HCl-extractable sedimentary Fe(II) at depth, indicative of biological iron reduction. Interestingly EXAFS analysis of sediments collected from such depths revealed little mineralogical change from the surficial BIOS. Dissolved concentrations of Fe(III), likely present as nanoparticulates or organic complexes, also rose with depth. Scanning electron microscopy images of the surface BIOS samples showed a proliferation of sheath structures characteristic of Fe(II)-oxidizing Leptothrix spp. A 16S rRNA clone library obtained from the surficial BIOS included microorganisms closely associated to known Fe(II)-oxidizing (Gallionella spp., Sideroxydans spp.) and Fe(III)-reducing (Rhodoferax ferrireducens and Geothrix fermentans) bacteria. Analysis of subsurface sediment collected from an Fe(III)-reducing horizon revealed a drop in the proportion of β-Proteobacteria, which hosts numerous Fe(II)-oxidizing genera, and a rise in the δ-Proteobacteria, home to anaerobic metal-reducing prokaryotes. The recognition of clones with close identity to bacteria intimately involved in complementary iron redox transformations in the same surficial BIOS sediment suggests that microbial oxidation and reduction of iron may be tightly coupled in this, and other, shallow sedimentary environments.
►We have examined the biogeochemistry of bacteriogenic iron oxides (BIOS) ►BIOS mineralogy shows minimal change between oxidizing and reducing sediment depths ►Fe(II)-oxidizing and Fe(III)-reducing bacteria identified in surficial BIOS sediment ►Closely coupled microbial iron redox cycle exists in surface BIOS-rich sediments</description><subject>absorption</subject><subject>Bacteria</subject><subject>BIOS</subject><subject>Circumneutral iron oxidation</subject><subject>clones</subject><subject>delta-Proteobacteria</subject><subject>Dissolution</subject><subject>Fe(II)-oxidizing bacteria</subject><subject>Fe(III)-reducing bacteria</subject><subject>ferrihydrite</subject><subject>Gallionella</subject><subject>geochemistry</subject><subject>Geothrix fermentans</subject><subject>goethite</subject><subject>groundwater</subject><subject>hosts</subject><subject>iron</subject><subject>Iron oxides</subject><subject>lepidocrocite</subject><subject>Microorganisms</subject><subject>Mineralogy</subject><subject>Nanostructure</subject><subject>oxidation</subject><subject>prokaryotic cells</subject><subject>Redox cycling</subject><subject>Rhodoferax</subject><subject>ribosomal RNA</subject><subject>scanning electron microscopy</subject><subject>Sediments</subject><subject>spectroscopy</subject><subject>X-radiation</subject><subject>X-ray diffraction</subject><issn>0009-2541</issn><issn>1872-6836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi0EEkvpT0D4ximLP2LHOSFUUUAq4tD2bDn2ODurbFzsLG3_PY7SOydrrGfemXkI-cDZnjOuPx_3_gCnEdJesPWP75noXpEdN51otJH6NdkxxvpGqJa_Je9KOdaSS6V2ZPqFPqcB3UTdHGgNWbPQ1zqCW84ZCi3ncYSyUMxpphlCeqL-2U84j_QRlwPOdHB-gYxphBn9xqUnDNBk9AdaIOAJ5qW8J2-imwpcvrwX5P76293Vj-bm9_efV19vGqeYXhrQrWTMtXqIfZCi9SAN73TbCogtd7rvXeiGwIwyfnBKmWh8kBGE1DF6Y-QF-bTlPuT051xXtycsHqbJzZDOxRrNZNcLIyqpNrJKKCVDtA8ZTy4_W87sKtce7Ytcu8q1nNsqt_Z93PqiS9aNGYu9v62AqmJ1p9ma_GUjoB76FyHb4hFmX11k8IsNCf8z4x-AGpEL</recordid><startdate>20110202</startdate><enddate>20110202</enddate><creator>Gault, Andrew G.</creator><creator>Ibrahim, Alexandre</creator><creator>Langley, Sean</creator><creator>Renaud, Robert</creator><creator>Takahashi, Yoshio</creator><creator>Boothman, Christopher</creator><creator>Lloyd, Jonathan R.</creator><creator>Clark, Ian D.</creator><creator>Ferris, F. Grant</creator><creator>Fortin, Danielle</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20110202</creationdate><title>Microbial and geochemical features suggest iron redox cycling within bacteriogenic iron oxide-rich sediments</title><author>Gault, Andrew G. ; Ibrahim, Alexandre ; Langley, Sean ; Renaud, Robert ; Takahashi, Yoshio ; Boothman, Christopher ; Lloyd, Jonathan R. ; Clark, Ian D. ; Ferris, F. Grant ; Fortin, Danielle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a506t-e64300a46bf9d324ce38176442ef41a699ad7bd0858cba558f8cd3fe236ffc883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>absorption</topic><topic>Bacteria</topic><topic>BIOS</topic><topic>Circumneutral iron oxidation</topic><topic>clones</topic><topic>delta-Proteobacteria</topic><topic>Dissolution</topic><topic>Fe(II)-oxidizing bacteria</topic><topic>Fe(III)-reducing bacteria</topic><topic>ferrihydrite</topic><topic>Gallionella</topic><topic>geochemistry</topic><topic>Geothrix fermentans</topic><topic>goethite</topic><topic>groundwater</topic><topic>hosts</topic><topic>iron</topic><topic>Iron oxides</topic><topic>lepidocrocite</topic><topic>Microorganisms</topic><topic>Mineralogy</topic><topic>Nanostructure</topic><topic>oxidation</topic><topic>prokaryotic cells</topic><topic>Redox cycling</topic><topic>Rhodoferax</topic><topic>ribosomal RNA</topic><topic>scanning electron microscopy</topic><topic>Sediments</topic><topic>spectroscopy</topic><topic>X-radiation</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gault, Andrew G.</creatorcontrib><creatorcontrib>Ibrahim, Alexandre</creatorcontrib><creatorcontrib>Langley, Sean</creatorcontrib><creatorcontrib>Renaud, Robert</creatorcontrib><creatorcontrib>Takahashi, Yoshio</creatorcontrib><creatorcontrib>Boothman, Christopher</creatorcontrib><creatorcontrib>Lloyd, Jonathan R.</creatorcontrib><creatorcontrib>Clark, Ian D.</creatorcontrib><creatorcontrib>Ferris, F. Grant</creatorcontrib><creatorcontrib>Fortin, Danielle</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Chemical geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gault, Andrew G.</au><au>Ibrahim, Alexandre</au><au>Langley, Sean</au><au>Renaud, Robert</au><au>Takahashi, Yoshio</au><au>Boothman, Christopher</au><au>Lloyd, Jonathan R.</au><au>Clark, Ian D.</au><au>Ferris, F. Grant</au><au>Fortin, Danielle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial and geochemical features suggest iron redox cycling within bacteriogenic iron oxide-rich sediments</atitle><jtitle>Chemical geology</jtitle><date>2011-02-02</date><risdate>2011</risdate><volume>281</volume><issue>1-2</issue><spage>41</spage><epage>51</epage><pages>41-51</pages><issn>0009-2541</issn><eissn>1872-6836</eissn><abstract>The geochemistry, mineralogy and microbiology of bacteriogenic iron oxides (BIOS) deposited at a circumneutral groundwater seep were examined to evaluate the biogeochemical controls on the redox cycle of iron in such environments. X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy showed that 2-line ferrihydrite dominated (60–70%) the BIOS mineralogy, with more crystalline lepidocrocite and goethite phases comprising the remainder, likely the product of Fe(II)-induced dissolution–reprecipitation pathways. Subsurface porewater profiles displayed an increase in dissolved (<0.2μm) equilibrium concentrations of Fe(II), also reflected in peaks in HCl-extractable sedimentary Fe(II) at depth, indicative of biological iron reduction. Interestingly EXAFS analysis of sediments collected from such depths revealed little mineralogical change from the surficial BIOS. Dissolved concentrations of Fe(III), likely present as nanoparticulates or organic complexes, also rose with depth. Scanning electron microscopy images of the surface BIOS samples showed a proliferation of sheath structures characteristic of Fe(II)-oxidizing Leptothrix spp. A 16S rRNA clone library obtained from the surficial BIOS included microorganisms closely associated to known Fe(II)-oxidizing (Gallionella spp., Sideroxydans spp.) and Fe(III)-reducing (Rhodoferax ferrireducens and Geothrix fermentans) bacteria. Analysis of subsurface sediment collected from an Fe(III)-reducing horizon revealed a drop in the proportion of β-Proteobacteria, which hosts numerous Fe(II)-oxidizing genera, and a rise in the δ-Proteobacteria, home to anaerobic metal-reducing prokaryotes. The recognition of clones with close identity to bacteria intimately involved in complementary iron redox transformations in the same surficial BIOS sediment suggests that microbial oxidation and reduction of iron may be tightly coupled in this, and other, shallow sedimentary environments.
►We have examined the biogeochemistry of bacteriogenic iron oxides (BIOS) ►BIOS mineralogy shows minimal change between oxidizing and reducing sediment depths ►Fe(II)-oxidizing and Fe(III)-reducing bacteria identified in surficial BIOS sediment ►Closely coupled microbial iron redox cycle exists in surface BIOS-rich sediments</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.chemgeo.2010.11.027</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2541 |
ispartof | Chemical geology, 2011-02, Vol.281 (1-2), p.41-51 |
issn | 0009-2541 1872-6836 |
language | eng |
recordid | cdi_proquest_miscellaneous_860379282 |
source | Elsevier ScienceDirect Journals |
subjects | absorption Bacteria BIOS Circumneutral iron oxidation clones delta-Proteobacteria Dissolution Fe(II)-oxidizing bacteria Fe(III)-reducing bacteria ferrihydrite Gallionella geochemistry Geothrix fermentans goethite groundwater hosts iron Iron oxides lepidocrocite Microorganisms Mineralogy Nanostructure oxidation prokaryotic cells Redox cycling Rhodoferax ribosomal RNA scanning electron microscopy Sediments spectroscopy X-radiation X-ray diffraction |
title | Microbial and geochemical features suggest iron redox cycling within bacteriogenic iron oxide-rich sediments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20and%20geochemical%20features%20suggest%20iron%20redox%20cycling%20within%20bacteriogenic%20iron%20oxide-rich%20sediments&rft.jtitle=Chemical%20geology&rft.au=Gault,%20Andrew%20G.&rft.date=2011-02-02&rft.volume=281&rft.issue=1-2&rft.spage=41&rft.epage=51&rft.pages=41-51&rft.issn=0009-2541&rft.eissn=1872-6836&rft_id=info:doi/10.1016/j.chemgeo.2010.11.027&rft_dat=%3Cproquest_cross%3E860379282%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=860379282&rft_id=info:pmid/&rft_els_id=S0009254110004304&rfr_iscdi=true |