Phase-resolved analysis of the susceptibility of pinned spiral waves to far-field pacing in a two-dimensional model of excitable

Life-threatening cardiac arrhythmias are associated with the existence of stable and unstable spiral waves. Termination of such complex spatio-temporal patterns by local control is substantially limited by anchoring of spiral waves at natural heterogeneities. Far-field pacing (FFP) is a new local co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2010-05, Vol.368 (1918), p.2221-2236
Hauptverfasser: Bittihn, Philip, Squires, Amgad, Luther, Gisa, Bodenschatz, Eberhard, Krinsky, Valentin, Parlitz, Ulrich, Luther, Stefan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2236
container_issue 1918
container_start_page 2221
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 368
creator Bittihn, Philip
Squires, Amgad
Luther, Gisa
Bodenschatz, Eberhard
Krinsky, Valentin
Parlitz, Ulrich
Luther, Stefan
description Life-threatening cardiac arrhythmias are associated with the existence of stable and unstable spiral waves. Termination of such complex spatio-temporal patterns by local control is substantially limited by anchoring of spiral waves at natural heterogeneities. Far-field pacing (FFP) is a new local control strategy that has been shown to be capable of unpinning waves from obstacles. In this article, we investigate in detail the FFP unpinning mechanism for a single rotating wave pinned to a heterogeneity. We identify qualitatively different phase regimes of the rotating wave showing that the concept of vulnerability is important but not sufficient to explain the failure of unpinning in all cases. Specifically, we find that a reduced excitation threshold can lead to the failure of unpinning, even inside the vulnerable window. The critical value of the excitation threshold (below which no unpinning is possible) decreases for higher electric field strengths and larger obstacles. In contrast, for a high excitation threshold, the success of unpinning is determined solely by vulnerability, allowing for a convenient estimation of the unpinning success rate. In some cases, we also observe phase resetting in discontinuous phase intervals of the spiral wave. This effect is important for the application of multiple stimuli in experiments.
doi_str_mv 10.1098/rsta.2010.0038
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_860373685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>860373685</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_8603736853</originalsourceid><addsrcrecordid>eNqNjrFOw0AQRK8AKYHQUm9H5XBnJ45TIxAlBX20sddk0fruuD0npOPTcSQ-gGo0o6enMebe2aWz2-YxacZlaadqbdVcmblbbVxRbutyZm5UP611rl6Xc_PzdkClIpEGOVIH6FHOygqhh3wg0FFbipn3LJzPlzWy9xOokRMKnPBICjlAj6nomaSDiC37D2APCPkUio4H8sphMsMQOpKLhb5bzrgXWpjrHkXp7i9vzcPL8_vTaxFT-BpJ827g6YIIegqj7praVpuqbtbV_8lfKuJZiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860373685</pqid></control><display><type>article</type><title>Phase-resolved analysis of the susceptibility of pinned spiral waves to far-field pacing in a two-dimensional model of excitable</title><source>JSTOR Mathematics &amp; Statistics</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Bittihn, Philip ; Squires, Amgad ; Luther, Gisa ; Bodenschatz, Eberhard ; Krinsky, Valentin ; Parlitz, Ulrich ; Luther, Stefan</creator><creatorcontrib>Bittihn, Philip ; Squires, Amgad ; Luther, Gisa ; Bodenschatz, Eberhard ; Krinsky, Valentin ; Parlitz, Ulrich ; Luther, Stefan</creatorcontrib><description>Life-threatening cardiac arrhythmias are associated with the existence of stable and unstable spiral waves. Termination of such complex spatio-temporal patterns by local control is substantially limited by anchoring of spiral waves at natural heterogeneities. Far-field pacing (FFP) is a new local control strategy that has been shown to be capable of unpinning waves from obstacles. In this article, we investigate in detail the FFP unpinning mechanism for a single rotating wave pinned to a heterogeneity. We identify qualitatively different phase regimes of the rotating wave showing that the concept of vulnerability is important but not sufficient to explain the failure of unpinning in all cases. Specifically, we find that a reduced excitation threshold can lead to the failure of unpinning, even inside the vulnerable window. The critical value of the excitation threshold (below which no unpinning is possible) decreases for higher electric field strengths and larger obstacles. In contrast, for a high excitation threshold, the success of unpinning is determined solely by vulnerability, allowing for a convenient estimation of the unpinning success rate. In some cases, we also observe phase resetting in discontinuous phase intervals of the spiral wave. This effect is important for the application of multiple stimuli in experiments.</description><identifier>ISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2010.0038</identifier><language>eng</language><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2010-05, Vol.368 (1918), p.2221-2236</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Bittihn, Philip</creatorcontrib><creatorcontrib>Squires, Amgad</creatorcontrib><creatorcontrib>Luther, Gisa</creatorcontrib><creatorcontrib>Bodenschatz, Eberhard</creatorcontrib><creatorcontrib>Krinsky, Valentin</creatorcontrib><creatorcontrib>Parlitz, Ulrich</creatorcontrib><creatorcontrib>Luther, Stefan</creatorcontrib><title>Phase-resolved analysis of the susceptibility of pinned spiral waves to far-field pacing in a two-dimensional model of excitable</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>Life-threatening cardiac arrhythmias are associated with the existence of stable and unstable spiral waves. Termination of such complex spatio-temporal patterns by local control is substantially limited by anchoring of spiral waves at natural heterogeneities. Far-field pacing (FFP) is a new local control strategy that has been shown to be capable of unpinning waves from obstacles. In this article, we investigate in detail the FFP unpinning mechanism for a single rotating wave pinned to a heterogeneity. We identify qualitatively different phase regimes of the rotating wave showing that the concept of vulnerability is important but not sufficient to explain the failure of unpinning in all cases. Specifically, we find that a reduced excitation threshold can lead to the failure of unpinning, even inside the vulnerable window. The critical value of the excitation threshold (below which no unpinning is possible) decreases for higher electric field strengths and larger obstacles. In contrast, for a high excitation threshold, the success of unpinning is determined solely by vulnerability, allowing for a convenient estimation of the unpinning success rate. In some cases, we also observe phase resetting in discontinuous phase intervals of the spiral wave. This effect is important for the application of multiple stimuli in experiments.</description><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNjrFOw0AQRK8AKYHQUm9H5XBnJ45TIxAlBX20sddk0fruuD0npOPTcSQ-gGo0o6enMebe2aWz2-YxacZlaadqbdVcmblbbVxRbutyZm5UP611rl6Xc_PzdkClIpEGOVIH6FHOygqhh3wg0FFbipn3LJzPlzWy9xOokRMKnPBICjlAj6nomaSDiC37D2APCPkUio4H8sphMsMQOpKLhb5bzrgXWpjrHkXp7i9vzcPL8_vTaxFT-BpJ827g6YIIegqj7praVpuqbtbV_8lfKuJZiw</recordid><startdate>20100513</startdate><enddate>20100513</enddate><creator>Bittihn, Philip</creator><creator>Squires, Amgad</creator><creator>Luther, Gisa</creator><creator>Bodenschatz, Eberhard</creator><creator>Krinsky, Valentin</creator><creator>Parlitz, Ulrich</creator><creator>Luther, Stefan</creator><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20100513</creationdate><title>Phase-resolved analysis of the susceptibility of pinned spiral waves to far-field pacing in a two-dimensional model of excitable</title><author>Bittihn, Philip ; Squires, Amgad ; Luther, Gisa ; Bodenschatz, Eberhard ; Krinsky, Valentin ; Parlitz, Ulrich ; Luther, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_8603736853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bittihn, Philip</creatorcontrib><creatorcontrib>Squires, Amgad</creatorcontrib><creatorcontrib>Luther, Gisa</creatorcontrib><creatorcontrib>Bodenschatz, Eberhard</creatorcontrib><creatorcontrib>Krinsky, Valentin</creatorcontrib><creatorcontrib>Parlitz, Ulrich</creatorcontrib><creatorcontrib>Luther, Stefan</creatorcontrib><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bittihn, Philip</au><au>Squires, Amgad</au><au>Luther, Gisa</au><au>Bodenschatz, Eberhard</au><au>Krinsky, Valentin</au><au>Parlitz, Ulrich</au><au>Luther, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-resolved analysis of the susceptibility of pinned spiral waves to far-field pacing in a two-dimensional model of excitable</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>2010-05-13</date><risdate>2010</risdate><volume>368</volume><issue>1918</issue><spage>2221</spage><epage>2236</epage><pages>2221-2236</pages><issn>1471-2962</issn><abstract>Life-threatening cardiac arrhythmias are associated with the existence of stable and unstable spiral waves. Termination of such complex spatio-temporal patterns by local control is substantially limited by anchoring of spiral waves at natural heterogeneities. Far-field pacing (FFP) is a new local control strategy that has been shown to be capable of unpinning waves from obstacles. In this article, we investigate in detail the FFP unpinning mechanism for a single rotating wave pinned to a heterogeneity. We identify qualitatively different phase regimes of the rotating wave showing that the concept of vulnerability is important but not sufficient to explain the failure of unpinning in all cases. Specifically, we find that a reduced excitation threshold can lead to the failure of unpinning, even inside the vulnerable window. The critical value of the excitation threshold (below which no unpinning is possible) decreases for higher electric field strengths and larger obstacles. In contrast, for a high excitation threshold, the success of unpinning is determined solely by vulnerability, allowing for a convenient estimation of the unpinning success rate. In some cases, we also observe phase resetting in discontinuous phase intervals of the spiral wave. This effect is important for the application of multiple stimuli in experiments.</abstract><doi>10.1098/rsta.2010.0038</doi></addata></record>
fulltext fulltext
identifier ISSN: 1471-2962
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2010-05, Vol.368 (1918), p.2221-2236
issn 1471-2962
language eng
recordid cdi_proquest_miscellaneous_860373685
source JSTOR Mathematics & Statistics; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
title Phase-resolved analysis of the susceptibility of pinned spiral waves to far-field pacing in a two-dimensional model of excitable
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-resolved%20analysis%20of%20the%20susceptibility%20of%20pinned%20spiral%20waves%20to%20far-field%20pacing%20in%20a%20two-dimensional%20model%20of%20excitable&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Bittihn,%20Philip&rft.date=2010-05-13&rft.volume=368&rft.issue=1918&rft.spage=2221&rft.epage=2236&rft.pages=2221-2236&rft.issn=1471-2962&rft_id=info:doi/10.1098/rsta.2010.0038&rft_dat=%3Cproquest%3E860373685%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=860373685&rft_id=info:pmid/&rfr_iscdi=true