Intracranial self‐stimulation induces expression of learning and memory‐related genes in rat amygdala
Intracranial self‐stimulation (ICSS) in the lateral hypothalamus improves memory when administered immediately after a training session. In our laboratory, ICSS has been shown as a very reliable way to increase two‐way active avoidance (TWAA) conditioning, an amygdala‐dependent task. The aim of this...
Gespeichert in:
Veröffentlicht in: | Genes, brain and behavior brain and behavior, 2011-02, Vol.10 (1), p.69-77 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | Genes, brain and behavior |
container_volume | 10 |
creator | Kadar, E. Aldavert‐Vera, L. Huguet, G. Costa‐Miserachs, D. Morgado‐Bernal, I. Segura‐Torres, P. |
description | Intracranial self‐stimulation (ICSS) in the lateral hypothalamus improves memory when administered immediately after a training session. In our laboratory, ICSS has been shown as a very reliable way to increase two‐way active avoidance (TWAA) conditioning, an amygdala‐dependent task. The aim of this work was to study, in the rat amygdala, anatomical and molecular aspects of ICSS, using the same parameters facilitating TWAA. First, we examined the activation of ipsilateral and contralateral lateral (LA) and basolateral (BLA) amygdala, the main amygdalar regions involved in the TWAA, by the immunohistochemical determination of c‐Fos protein expression. Second, we tested the effects of the ICSS treatment on the expression of 14 genes related to learning and memory processes using real‐time polymerase chain reaction. Results showed a bilateral increase in c‐Fos protein expression in LA and BLA nuclei after ICSS treatment. We also found that Fos, brain‐derived nerve growth factor (BDNF), Arc, inducible cAMP early repressor (ICER), COX‐2, Dnajb1, FKpb5 and Ret genes were upregulated in the amygdala 90 min and 4.5 h post ICSS. From this set of genes, BDNF, Arc and ICER are functionally associated with the cAMP‐responsive element‐mediated gene transcription molecular pathway that plays a pivotal role in memory, whereas Dnajb1 and Ret are associated with protein folding required for plasticity or neuroprotection. Our results suggest that ICSS induces expression of genes related with synaptic plasticity and protein folding functions in the rat amygdaloid area, which may be involved in the molecular mechanisms by which ICSS may improve or restore memory functions related to this brain structure. |
doi_str_mv | 10.1111/j.1601-183X.2010.00609.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_860372875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3278328471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4279-267c732dff731d1eee00c16b851c8835062f37004276eb65fbb2fe15b10315263</originalsourceid><addsrcrecordid>eNqNkctu1DAUhi1ERS_wCsgSC1YzHNvjSyQ2tKKlUqVuQGJnOcnxyKPEGexEzOz6CDxjn6QOU2bBBrzx0fH3H8v-CKEMlqysD5slU8AWzIjvSw6lC6CgWu5ekLPjwctjvTKn5DznDQDTwrBX5JRDpSrN9RkJt3FMrkkuBtfRjJ1_fPiVx9BPnRvDEGmI7dRgprjbJsx5bg2eduhSDHFNXWxpj_2Q9iWXsISwpWuMJREiTW6krt-vW9e51-TEuy7jm-f9gny7_vz16svi7v7m9urT3aJZcV0tuNKNFrz1XgvWMkQEaJiqjWSNMUKC4l5ogAIrrJX0dc09MlkzEExyJS7I-8PcbRp-TJhH24fcYNe5iMOUrVEgNDda_ptcqQq4MayQ7_4iN8OUYnmGZbJ8qhQrWRXKHKgmDTkn9HabQu_S3jKwsze7sbMSO-uxszf725vdlejb5wumusf2GPwjqgAfD8DP0OH-vwfbm8vLUogn6jeoJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517353459</pqid></control><display><type>article</type><title>Intracranial self‐stimulation induces expression of learning and memory‐related genes in rat amygdala</title><source>Wiley-Blackwell Open Access Titles</source><creator>Kadar, E. ; Aldavert‐Vera, L. ; Huguet, G. ; Costa‐Miserachs, D. ; Morgado‐Bernal, I. ; Segura‐Torres, P.</creator><creatorcontrib>Kadar, E. ; Aldavert‐Vera, L. ; Huguet, G. ; Costa‐Miserachs, D. ; Morgado‐Bernal, I. ; Segura‐Torres, P.</creatorcontrib><description>Intracranial self‐stimulation (ICSS) in the lateral hypothalamus improves memory when administered immediately after a training session. In our laboratory, ICSS has been shown as a very reliable way to increase two‐way active avoidance (TWAA) conditioning, an amygdala‐dependent task. The aim of this work was to study, in the rat amygdala, anatomical and molecular aspects of ICSS, using the same parameters facilitating TWAA. First, we examined the activation of ipsilateral and contralateral lateral (LA) and basolateral (BLA) amygdala, the main amygdalar regions involved in the TWAA, by the immunohistochemical determination of c‐Fos protein expression. Second, we tested the effects of the ICSS treatment on the expression of 14 genes related to learning and memory processes using real‐time polymerase chain reaction. Results showed a bilateral increase in c‐Fos protein expression in LA and BLA nuclei after ICSS treatment. We also found that Fos, brain‐derived nerve growth factor (BDNF), Arc, inducible cAMP early repressor (ICER), COX‐2, Dnajb1, FKpb5 and Ret genes were upregulated in the amygdala 90 min and 4.5 h post ICSS. From this set of genes, BDNF, Arc and ICER are functionally associated with the cAMP‐responsive element‐mediated gene transcription molecular pathway that plays a pivotal role in memory, whereas Dnajb1 and Ret are associated with protein folding required for plasticity or neuroprotection. Our results suggest that ICSS induces expression of genes related with synaptic plasticity and protein folding functions in the rat amygdaloid area, which may be involved in the molecular mechanisms by which ICSS may improve or restore memory functions related to this brain structure.</description><identifier>ISSN: 1601-1848</identifier><identifier>EISSN: 1601-183X</identifier><identifier>DOI: 10.1111/j.1601-183X.2010.00609.x</identifier><identifier>PMID: 20969727</identifier><identifier>CODEN: GBBEAO</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Amygdala ; Amygdala - physiology ; Animals ; Brain - physiology ; Brain-derived neurotrophic factor ; Brain-Derived Neurotrophic Factor - genetics ; Brain-Derived Neurotrophic Factor - physiology ; c-Fos protein ; Cyclic AMP ; Cyclic AMP Response Element Modulator - genetics ; Cyclooxygenase-2 ; Cytoskeletal Proteins - genetics ; DNA, Complementary - biosynthesis ; DNA, Complementary - genetics ; Electric Stimulation ; Gene Expression Regulation - genetics ; Gene Expression Regulation - physiology ; Genes ; Hypothalamus (lateral) ; ICSS ; Image Processing, Computer-Assisted ; Immunohistochemistry ; Intracranial self-stimulation ; Learning ; Learning - physiology ; Male ; Memory ; Memory - physiology ; Molecular modelling ; Nerve growth factor ; Nerve Tissue Proteins - genetics ; Neuroprotection ; Plasticity (synaptic) ; Polymerase chain reaction ; Protein expression ; Protein folding ; Proto-Oncogene Proteins c-fos - metabolism ; Rats ; Rats, Wistar ; real‐time PCR ; Recovery of function ; Repressors ; Reverse Transcriptase Polymerase Chain Reaction ; RNA - biosynthesis ; RNA - genetics ; Rodents ; Self Stimulation ; Stereotaxic Techniques ; synaptic plasticity ; Transcription</subject><ispartof>Genes, brain and behavior, 2011-02, Vol.10 (1), p.69-77</ispartof><rights>2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society</rights><rights>2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4279-267c732dff731d1eee00c16b851c8835062f37004276eb65fbb2fe15b10315263</citedby><cites>FETCH-LOGICAL-c4279-267c732dff731d1eee00c16b851c8835062f37004276eb65fbb2fe15b10315263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1601-183X.2010.00609.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1601-183X.2010.00609.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1601-183X.2010.00609.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20969727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kadar, E.</creatorcontrib><creatorcontrib>Aldavert‐Vera, L.</creatorcontrib><creatorcontrib>Huguet, G.</creatorcontrib><creatorcontrib>Costa‐Miserachs, D.</creatorcontrib><creatorcontrib>Morgado‐Bernal, I.</creatorcontrib><creatorcontrib>Segura‐Torres, P.</creatorcontrib><title>Intracranial self‐stimulation induces expression of learning and memory‐related genes in rat amygdala</title><title>Genes, brain and behavior</title><addtitle>Genes Brain Behav</addtitle><description>Intracranial self‐stimulation (ICSS) in the lateral hypothalamus improves memory when administered immediately after a training session. In our laboratory, ICSS has been shown as a very reliable way to increase two‐way active avoidance (TWAA) conditioning, an amygdala‐dependent task. The aim of this work was to study, in the rat amygdala, anatomical and molecular aspects of ICSS, using the same parameters facilitating TWAA. First, we examined the activation of ipsilateral and contralateral lateral (LA) and basolateral (BLA) amygdala, the main amygdalar regions involved in the TWAA, by the immunohistochemical determination of c‐Fos protein expression. Second, we tested the effects of the ICSS treatment on the expression of 14 genes related to learning and memory processes using real‐time polymerase chain reaction. Results showed a bilateral increase in c‐Fos protein expression in LA and BLA nuclei after ICSS treatment. We also found that Fos, brain‐derived nerve growth factor (BDNF), Arc, inducible cAMP early repressor (ICER), COX‐2, Dnajb1, FKpb5 and Ret genes were upregulated in the amygdala 90 min and 4.5 h post ICSS. From this set of genes, BDNF, Arc and ICER are functionally associated with the cAMP‐responsive element‐mediated gene transcription molecular pathway that plays a pivotal role in memory, whereas Dnajb1 and Ret are associated with protein folding required for plasticity or neuroprotection. Our results suggest that ICSS induces expression of genes related with synaptic plasticity and protein folding functions in the rat amygdaloid area, which may be involved in the molecular mechanisms by which ICSS may improve or restore memory functions related to this brain structure.</description><subject>Amygdala</subject><subject>Amygdala - physiology</subject><subject>Animals</subject><subject>Brain - physiology</subject><subject>Brain-derived neurotrophic factor</subject><subject>Brain-Derived Neurotrophic Factor - genetics</subject><subject>Brain-Derived Neurotrophic Factor - physiology</subject><subject>c-Fos protein</subject><subject>Cyclic AMP</subject><subject>Cyclic AMP Response Element Modulator - genetics</subject><subject>Cyclooxygenase-2</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>DNA, Complementary - biosynthesis</subject><subject>DNA, Complementary - genetics</subject><subject>Electric Stimulation</subject><subject>Gene Expression Regulation - genetics</subject><subject>Gene Expression Regulation - physiology</subject><subject>Genes</subject><subject>Hypothalamus (lateral)</subject><subject>ICSS</subject><subject>Image Processing, Computer-Assisted</subject><subject>Immunohistochemistry</subject><subject>Intracranial self-stimulation</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Male</subject><subject>Memory</subject><subject>Memory - physiology</subject><subject>Molecular modelling</subject><subject>Nerve growth factor</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Neuroprotection</subject><subject>Plasticity (synaptic)</subject><subject>Polymerase chain reaction</subject><subject>Protein expression</subject><subject>Protein folding</subject><subject>Proto-Oncogene Proteins c-fos - metabolism</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>real‐time PCR</subject><subject>Recovery of function</subject><subject>Repressors</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA - biosynthesis</subject><subject>RNA - genetics</subject><subject>Rodents</subject><subject>Self Stimulation</subject><subject>Stereotaxic Techniques</subject><subject>synaptic plasticity</subject><subject>Transcription</subject><issn>1601-1848</issn><issn>1601-183X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAUhi1ERS_wCsgSC1YzHNvjSyQ2tKKlUqVuQGJnOcnxyKPEGexEzOz6CDxjn6QOU2bBBrzx0fH3H8v-CKEMlqysD5slU8AWzIjvSw6lC6CgWu5ekLPjwctjvTKn5DznDQDTwrBX5JRDpSrN9RkJt3FMrkkuBtfRjJ1_fPiVx9BPnRvDEGmI7dRgprjbJsx5bg2eduhSDHFNXWxpj_2Q9iWXsISwpWuMJREiTW6krt-vW9e51-TEuy7jm-f9gny7_vz16svi7v7m9urT3aJZcV0tuNKNFrz1XgvWMkQEaJiqjWSNMUKC4l5ogAIrrJX0dc09MlkzEExyJS7I-8PcbRp-TJhH24fcYNe5iMOUrVEgNDda_ptcqQq4MayQ7_4iN8OUYnmGZbJ8qhQrWRXKHKgmDTkn9HabQu_S3jKwsze7sbMSO-uxszf725vdlejb5wumusf2GPwjqgAfD8DP0OH-vwfbm8vLUogn6jeoJQ</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Kadar, E.</creator><creator>Aldavert‐Vera, L.</creator><creator>Huguet, G.</creator><creator>Costa‐Miserachs, D.</creator><creator>Morgado‐Bernal, I.</creator><creator>Segura‐Torres, P.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201102</creationdate><title>Intracranial self‐stimulation induces expression of learning and memory‐related genes in rat amygdala</title><author>Kadar, E. ; Aldavert‐Vera, L. ; Huguet, G. ; Costa‐Miserachs, D. ; Morgado‐Bernal, I. ; Segura‐Torres, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4279-267c732dff731d1eee00c16b851c8835062f37004276eb65fbb2fe15b10315263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amygdala</topic><topic>Amygdala - physiology</topic><topic>Animals</topic><topic>Brain - physiology</topic><topic>Brain-derived neurotrophic factor</topic><topic>Brain-Derived Neurotrophic Factor - genetics</topic><topic>Brain-Derived Neurotrophic Factor - physiology</topic><topic>c-Fos protein</topic><topic>Cyclic AMP</topic><topic>Cyclic AMP Response Element Modulator - genetics</topic><topic>Cyclooxygenase-2</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>DNA, Complementary - biosynthesis</topic><topic>DNA, Complementary - genetics</topic><topic>Electric Stimulation</topic><topic>Gene Expression Regulation - genetics</topic><topic>Gene Expression Regulation - physiology</topic><topic>Genes</topic><topic>Hypothalamus (lateral)</topic><topic>ICSS</topic><topic>Image Processing, Computer-Assisted</topic><topic>Immunohistochemistry</topic><topic>Intracranial self-stimulation</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Male</topic><topic>Memory</topic><topic>Memory - physiology</topic><topic>Molecular modelling</topic><topic>Nerve growth factor</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Neuroprotection</topic><topic>Plasticity (synaptic)</topic><topic>Polymerase chain reaction</topic><topic>Protein expression</topic><topic>Protein folding</topic><topic>Proto-Oncogene Proteins c-fos - metabolism</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>real‐time PCR</topic><topic>Recovery of function</topic><topic>Repressors</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA - biosynthesis</topic><topic>RNA - genetics</topic><topic>Rodents</topic><topic>Self Stimulation</topic><topic>Stereotaxic Techniques</topic><topic>synaptic plasticity</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadar, E.</creatorcontrib><creatorcontrib>Aldavert‐Vera, L.</creatorcontrib><creatorcontrib>Huguet, G.</creatorcontrib><creatorcontrib>Costa‐Miserachs, D.</creatorcontrib><creatorcontrib>Morgado‐Bernal, I.</creatorcontrib><creatorcontrib>Segura‐Torres, P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genes, brain and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kadar, E.</au><au>Aldavert‐Vera, L.</au><au>Huguet, G.</au><au>Costa‐Miserachs, D.</au><au>Morgado‐Bernal, I.</au><au>Segura‐Torres, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracranial self‐stimulation induces expression of learning and memory‐related genes in rat amygdala</atitle><jtitle>Genes, brain and behavior</jtitle><addtitle>Genes Brain Behav</addtitle><date>2011-02</date><risdate>2011</risdate><volume>10</volume><issue>1</issue><spage>69</spage><epage>77</epage><pages>69-77</pages><issn>1601-1848</issn><eissn>1601-183X</eissn><coden>GBBEAO</coden><abstract>Intracranial self‐stimulation (ICSS) in the lateral hypothalamus improves memory when administered immediately after a training session. In our laboratory, ICSS has been shown as a very reliable way to increase two‐way active avoidance (TWAA) conditioning, an amygdala‐dependent task. The aim of this work was to study, in the rat amygdala, anatomical and molecular aspects of ICSS, using the same parameters facilitating TWAA. First, we examined the activation of ipsilateral and contralateral lateral (LA) and basolateral (BLA) amygdala, the main amygdalar regions involved in the TWAA, by the immunohistochemical determination of c‐Fos protein expression. Second, we tested the effects of the ICSS treatment on the expression of 14 genes related to learning and memory processes using real‐time polymerase chain reaction. Results showed a bilateral increase in c‐Fos protein expression in LA and BLA nuclei after ICSS treatment. We also found that Fos, brain‐derived nerve growth factor (BDNF), Arc, inducible cAMP early repressor (ICER), COX‐2, Dnajb1, FKpb5 and Ret genes were upregulated in the amygdala 90 min and 4.5 h post ICSS. From this set of genes, BDNF, Arc and ICER are functionally associated with the cAMP‐responsive element‐mediated gene transcription molecular pathway that plays a pivotal role in memory, whereas Dnajb1 and Ret are associated with protein folding required for plasticity or neuroprotection. Our results suggest that ICSS induces expression of genes related with synaptic plasticity and protein folding functions in the rat amygdaloid area, which may be involved in the molecular mechanisms by which ICSS may improve or restore memory functions related to this brain structure.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20969727</pmid><doi>10.1111/j.1601-183X.2010.00609.x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1601-1848 |
ispartof | Genes, brain and behavior, 2011-02, Vol.10 (1), p.69-77 |
issn | 1601-1848 1601-183X |
language | eng |
recordid | cdi_proquest_miscellaneous_860372875 |
source | Wiley-Blackwell Open Access Titles |
subjects | Amygdala Amygdala - physiology Animals Brain - physiology Brain-derived neurotrophic factor Brain-Derived Neurotrophic Factor - genetics Brain-Derived Neurotrophic Factor - physiology c-Fos protein Cyclic AMP Cyclic AMP Response Element Modulator - genetics Cyclooxygenase-2 Cytoskeletal Proteins - genetics DNA, Complementary - biosynthesis DNA, Complementary - genetics Electric Stimulation Gene Expression Regulation - genetics Gene Expression Regulation - physiology Genes Hypothalamus (lateral) ICSS Image Processing, Computer-Assisted Immunohistochemistry Intracranial self-stimulation Learning Learning - physiology Male Memory Memory - physiology Molecular modelling Nerve growth factor Nerve Tissue Proteins - genetics Neuroprotection Plasticity (synaptic) Polymerase chain reaction Protein expression Protein folding Proto-Oncogene Proteins c-fos - metabolism Rats Rats, Wistar real‐time PCR Recovery of function Repressors Reverse Transcriptase Polymerase Chain Reaction RNA - biosynthesis RNA - genetics Rodents Self Stimulation Stereotaxic Techniques synaptic plasticity Transcription |
title | Intracranial self‐stimulation induces expression of learning and memory‐related genes in rat amygdala |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A43%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracranial%20self%E2%80%90stimulation%20induces%20expression%20of%20learning%20and%20memory%E2%80%90related%20genes%20in%20rat%20amygdala&rft.jtitle=Genes,%20brain%20and%20behavior&rft.au=Kadar,%20E.&rft.date=2011-02&rft.volume=10&rft.issue=1&rft.spage=69&rft.epage=77&rft.pages=69-77&rft.issn=1601-1848&rft.eissn=1601-183X&rft.coden=GBBEAO&rft_id=info:doi/10.1111/j.1601-183X.2010.00609.x&rft_dat=%3Cproquest_24P%3E3278328471%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1517353459&rft_id=info:pmid/20969727&rfr_iscdi=true |