Intracranial self‐stimulation induces expression of learning and memory‐related genes in rat amygdala

Intracranial self‐stimulation (ICSS) in the lateral hypothalamus improves memory when administered immediately after a training session. In our laboratory, ICSS has been shown as a very reliable way to increase two‐way active avoidance (TWAA) conditioning, an amygdala‐dependent task. The aim of this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes, brain and behavior brain and behavior, 2011-02, Vol.10 (1), p.69-77
Hauptverfasser: Kadar, E., Aldavert‐Vera, L., Huguet, G., Costa‐Miserachs, D., Morgado‐Bernal, I., Segura‐Torres, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue 1
container_start_page 69
container_title Genes, brain and behavior
container_volume 10
creator Kadar, E.
Aldavert‐Vera, L.
Huguet, G.
Costa‐Miserachs, D.
Morgado‐Bernal, I.
Segura‐Torres, P.
description Intracranial self‐stimulation (ICSS) in the lateral hypothalamus improves memory when administered immediately after a training session. In our laboratory, ICSS has been shown as a very reliable way to increase two‐way active avoidance (TWAA) conditioning, an amygdala‐dependent task. The aim of this work was to study, in the rat amygdala, anatomical and molecular aspects of ICSS, using the same parameters facilitating TWAA. First, we examined the activation of ipsilateral and contralateral lateral (LA) and basolateral (BLA) amygdala, the main amygdalar regions involved in the TWAA, by the immunohistochemical determination of c‐Fos protein expression. Second, we tested the effects of the ICSS treatment on the expression of 14 genes related to learning and memory processes using real‐time polymerase chain reaction. Results showed a bilateral increase in c‐Fos protein expression in LA and BLA nuclei after ICSS treatment. We also found that Fos, brain‐derived nerve growth factor (BDNF), Arc, inducible cAMP early repressor (ICER), COX‐2, Dnajb1, FKpb5 and Ret genes were upregulated in the amygdala 90 min and 4.5 h post ICSS. From this set of genes, BDNF, Arc and ICER are functionally associated with the cAMP‐responsive element‐mediated gene transcription molecular pathway that plays a pivotal role in memory, whereas Dnajb1 and Ret are associated with protein folding required for plasticity or neuroprotection. Our results suggest that ICSS induces expression of genes related with synaptic plasticity and protein folding functions in the rat amygdaloid area, which may be involved in the molecular mechanisms by which ICSS may improve or restore memory functions related to this brain structure.
doi_str_mv 10.1111/j.1601-183X.2010.00609.x
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_860372875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3278328471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4279-267c732dff731d1eee00c16b851c8835062f37004276eb65fbb2fe15b10315263</originalsourceid><addsrcrecordid>eNqNkctu1DAUhi1ERS_wCsgSC1YzHNvjSyQ2tKKlUqVuQGJnOcnxyKPEGexEzOz6CDxjn6QOU2bBBrzx0fH3H8v-CKEMlqysD5slU8AWzIjvSw6lC6CgWu5ekLPjwctjvTKn5DznDQDTwrBX5JRDpSrN9RkJt3FMrkkuBtfRjJ1_fPiVx9BPnRvDEGmI7dRgprjbJsx5bg2eduhSDHFNXWxpj_2Q9iWXsISwpWuMJREiTW6krt-vW9e51-TEuy7jm-f9gny7_vz16svi7v7m9urT3aJZcV0tuNKNFrz1XgvWMkQEaJiqjWSNMUKC4l5ogAIrrJX0dc09MlkzEExyJS7I-8PcbRp-TJhH24fcYNe5iMOUrVEgNDda_ptcqQq4MayQ7_4iN8OUYnmGZbJ8qhQrWRXKHKgmDTkn9HabQu_S3jKwsze7sbMSO-uxszf725vdlejb5wumusf2GPwjqgAfD8DP0OH-vwfbm8vLUogn6jeoJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517353459</pqid></control><display><type>article</type><title>Intracranial self‐stimulation induces expression of learning and memory‐related genes in rat amygdala</title><source>Wiley-Blackwell Open Access Titles</source><creator>Kadar, E. ; Aldavert‐Vera, L. ; Huguet, G. ; Costa‐Miserachs, D. ; Morgado‐Bernal, I. ; Segura‐Torres, P.</creator><creatorcontrib>Kadar, E. ; Aldavert‐Vera, L. ; Huguet, G. ; Costa‐Miserachs, D. ; Morgado‐Bernal, I. ; Segura‐Torres, P.</creatorcontrib><description>Intracranial self‐stimulation (ICSS) in the lateral hypothalamus improves memory when administered immediately after a training session. In our laboratory, ICSS has been shown as a very reliable way to increase two‐way active avoidance (TWAA) conditioning, an amygdala‐dependent task. The aim of this work was to study, in the rat amygdala, anatomical and molecular aspects of ICSS, using the same parameters facilitating TWAA. First, we examined the activation of ipsilateral and contralateral lateral (LA) and basolateral (BLA) amygdala, the main amygdalar regions involved in the TWAA, by the immunohistochemical determination of c‐Fos protein expression. Second, we tested the effects of the ICSS treatment on the expression of 14 genes related to learning and memory processes using real‐time polymerase chain reaction. Results showed a bilateral increase in c‐Fos protein expression in LA and BLA nuclei after ICSS treatment. We also found that Fos, brain‐derived nerve growth factor (BDNF), Arc, inducible cAMP early repressor (ICER), COX‐2, Dnajb1, FKpb5 and Ret genes were upregulated in the amygdala 90 min and 4.5 h post ICSS. From this set of genes, BDNF, Arc and ICER are functionally associated with the cAMP‐responsive element‐mediated gene transcription molecular pathway that plays a pivotal role in memory, whereas Dnajb1 and Ret are associated with protein folding required for plasticity or neuroprotection. Our results suggest that ICSS induces expression of genes related with synaptic plasticity and protein folding functions in the rat amygdaloid area, which may be involved in the molecular mechanisms by which ICSS may improve or restore memory functions related to this brain structure.</description><identifier>ISSN: 1601-1848</identifier><identifier>EISSN: 1601-183X</identifier><identifier>DOI: 10.1111/j.1601-183X.2010.00609.x</identifier><identifier>PMID: 20969727</identifier><identifier>CODEN: GBBEAO</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Amygdala ; Amygdala - physiology ; Animals ; Brain - physiology ; Brain-derived neurotrophic factor ; Brain-Derived Neurotrophic Factor - genetics ; Brain-Derived Neurotrophic Factor - physiology ; c-Fos protein ; Cyclic AMP ; Cyclic AMP Response Element Modulator - genetics ; Cyclooxygenase-2 ; Cytoskeletal Proteins - genetics ; DNA, Complementary - biosynthesis ; DNA, Complementary - genetics ; Electric Stimulation ; Gene Expression Regulation - genetics ; Gene Expression Regulation - physiology ; Genes ; Hypothalamus (lateral) ; ICSS ; Image Processing, Computer-Assisted ; Immunohistochemistry ; Intracranial self-stimulation ; Learning ; Learning - physiology ; Male ; Memory ; Memory - physiology ; Molecular modelling ; Nerve growth factor ; Nerve Tissue Proteins - genetics ; Neuroprotection ; Plasticity (synaptic) ; Polymerase chain reaction ; Protein expression ; Protein folding ; Proto-Oncogene Proteins c-fos - metabolism ; Rats ; Rats, Wistar ; real‐time PCR ; Recovery of function ; Repressors ; Reverse Transcriptase Polymerase Chain Reaction ; RNA - biosynthesis ; RNA - genetics ; Rodents ; Self Stimulation ; Stereotaxic Techniques ; synaptic plasticity ; Transcription</subject><ispartof>Genes, brain and behavior, 2011-02, Vol.10 (1), p.69-77</ispartof><rights>2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society</rights><rights>2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4279-267c732dff731d1eee00c16b851c8835062f37004276eb65fbb2fe15b10315263</citedby><cites>FETCH-LOGICAL-c4279-267c732dff731d1eee00c16b851c8835062f37004276eb65fbb2fe15b10315263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1601-183X.2010.00609.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1601-183X.2010.00609.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1601-183X.2010.00609.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20969727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kadar, E.</creatorcontrib><creatorcontrib>Aldavert‐Vera, L.</creatorcontrib><creatorcontrib>Huguet, G.</creatorcontrib><creatorcontrib>Costa‐Miserachs, D.</creatorcontrib><creatorcontrib>Morgado‐Bernal, I.</creatorcontrib><creatorcontrib>Segura‐Torres, P.</creatorcontrib><title>Intracranial self‐stimulation induces expression of learning and memory‐related genes in rat amygdala</title><title>Genes, brain and behavior</title><addtitle>Genes Brain Behav</addtitle><description>Intracranial self‐stimulation (ICSS) in the lateral hypothalamus improves memory when administered immediately after a training session. In our laboratory, ICSS has been shown as a very reliable way to increase two‐way active avoidance (TWAA) conditioning, an amygdala‐dependent task. The aim of this work was to study, in the rat amygdala, anatomical and molecular aspects of ICSS, using the same parameters facilitating TWAA. First, we examined the activation of ipsilateral and contralateral lateral (LA) and basolateral (BLA) amygdala, the main amygdalar regions involved in the TWAA, by the immunohistochemical determination of c‐Fos protein expression. Second, we tested the effects of the ICSS treatment on the expression of 14 genes related to learning and memory processes using real‐time polymerase chain reaction. Results showed a bilateral increase in c‐Fos protein expression in LA and BLA nuclei after ICSS treatment. We also found that Fos, brain‐derived nerve growth factor (BDNF), Arc, inducible cAMP early repressor (ICER), COX‐2, Dnajb1, FKpb5 and Ret genes were upregulated in the amygdala 90 min and 4.5 h post ICSS. From this set of genes, BDNF, Arc and ICER are functionally associated with the cAMP‐responsive element‐mediated gene transcription molecular pathway that plays a pivotal role in memory, whereas Dnajb1 and Ret are associated with protein folding required for plasticity or neuroprotection. Our results suggest that ICSS induces expression of genes related with synaptic plasticity and protein folding functions in the rat amygdaloid area, which may be involved in the molecular mechanisms by which ICSS may improve or restore memory functions related to this brain structure.</description><subject>Amygdala</subject><subject>Amygdala - physiology</subject><subject>Animals</subject><subject>Brain - physiology</subject><subject>Brain-derived neurotrophic factor</subject><subject>Brain-Derived Neurotrophic Factor - genetics</subject><subject>Brain-Derived Neurotrophic Factor - physiology</subject><subject>c-Fos protein</subject><subject>Cyclic AMP</subject><subject>Cyclic AMP Response Element Modulator - genetics</subject><subject>Cyclooxygenase-2</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>DNA, Complementary - biosynthesis</subject><subject>DNA, Complementary - genetics</subject><subject>Electric Stimulation</subject><subject>Gene Expression Regulation - genetics</subject><subject>Gene Expression Regulation - physiology</subject><subject>Genes</subject><subject>Hypothalamus (lateral)</subject><subject>ICSS</subject><subject>Image Processing, Computer-Assisted</subject><subject>Immunohistochemistry</subject><subject>Intracranial self-stimulation</subject><subject>Learning</subject><subject>Learning - physiology</subject><subject>Male</subject><subject>Memory</subject><subject>Memory - physiology</subject><subject>Molecular modelling</subject><subject>Nerve growth factor</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Neuroprotection</subject><subject>Plasticity (synaptic)</subject><subject>Polymerase chain reaction</subject><subject>Protein expression</subject><subject>Protein folding</subject><subject>Proto-Oncogene Proteins c-fos - metabolism</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>real‐time PCR</subject><subject>Recovery of function</subject><subject>Repressors</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA - biosynthesis</subject><subject>RNA - genetics</subject><subject>Rodents</subject><subject>Self Stimulation</subject><subject>Stereotaxic Techniques</subject><subject>synaptic plasticity</subject><subject>Transcription</subject><issn>1601-1848</issn><issn>1601-183X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctu1DAUhi1ERS_wCsgSC1YzHNvjSyQ2tKKlUqVuQGJnOcnxyKPEGexEzOz6CDxjn6QOU2bBBrzx0fH3H8v-CKEMlqysD5slU8AWzIjvSw6lC6CgWu5ekLPjwctjvTKn5DznDQDTwrBX5JRDpSrN9RkJt3FMrkkuBtfRjJ1_fPiVx9BPnRvDEGmI7dRgprjbJsx5bg2eduhSDHFNXWxpj_2Q9iWXsISwpWuMJREiTW6krt-vW9e51-TEuy7jm-f9gny7_vz16svi7v7m9urT3aJZcV0tuNKNFrz1XgvWMkQEaJiqjWSNMUKC4l5ogAIrrJX0dc09MlkzEExyJS7I-8PcbRp-TJhH24fcYNe5iMOUrVEgNDda_ptcqQq4MayQ7_4iN8OUYnmGZbJ8qhQrWRXKHKgmDTkn9HabQu_S3jKwsze7sbMSO-uxszf725vdlejb5wumusf2GPwjqgAfD8DP0OH-vwfbm8vLUogn6jeoJQ</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Kadar, E.</creator><creator>Aldavert‐Vera, L.</creator><creator>Huguet, G.</creator><creator>Costa‐Miserachs, D.</creator><creator>Morgado‐Bernal, I.</creator><creator>Segura‐Torres, P.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201102</creationdate><title>Intracranial self‐stimulation induces expression of learning and memory‐related genes in rat amygdala</title><author>Kadar, E. ; Aldavert‐Vera, L. ; Huguet, G. ; Costa‐Miserachs, D. ; Morgado‐Bernal, I. ; Segura‐Torres, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4279-267c732dff731d1eee00c16b851c8835062f37004276eb65fbb2fe15b10315263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amygdala</topic><topic>Amygdala - physiology</topic><topic>Animals</topic><topic>Brain - physiology</topic><topic>Brain-derived neurotrophic factor</topic><topic>Brain-Derived Neurotrophic Factor - genetics</topic><topic>Brain-Derived Neurotrophic Factor - physiology</topic><topic>c-Fos protein</topic><topic>Cyclic AMP</topic><topic>Cyclic AMP Response Element Modulator - genetics</topic><topic>Cyclooxygenase-2</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>DNA, Complementary - biosynthesis</topic><topic>DNA, Complementary - genetics</topic><topic>Electric Stimulation</topic><topic>Gene Expression Regulation - genetics</topic><topic>Gene Expression Regulation - physiology</topic><topic>Genes</topic><topic>Hypothalamus (lateral)</topic><topic>ICSS</topic><topic>Image Processing, Computer-Assisted</topic><topic>Immunohistochemistry</topic><topic>Intracranial self-stimulation</topic><topic>Learning</topic><topic>Learning - physiology</topic><topic>Male</topic><topic>Memory</topic><topic>Memory - physiology</topic><topic>Molecular modelling</topic><topic>Nerve growth factor</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Neuroprotection</topic><topic>Plasticity (synaptic)</topic><topic>Polymerase chain reaction</topic><topic>Protein expression</topic><topic>Protein folding</topic><topic>Proto-Oncogene Proteins c-fos - metabolism</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>real‐time PCR</topic><topic>Recovery of function</topic><topic>Repressors</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA - biosynthesis</topic><topic>RNA - genetics</topic><topic>Rodents</topic><topic>Self Stimulation</topic><topic>Stereotaxic Techniques</topic><topic>synaptic plasticity</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadar, E.</creatorcontrib><creatorcontrib>Aldavert‐Vera, L.</creatorcontrib><creatorcontrib>Huguet, G.</creatorcontrib><creatorcontrib>Costa‐Miserachs, D.</creatorcontrib><creatorcontrib>Morgado‐Bernal, I.</creatorcontrib><creatorcontrib>Segura‐Torres, P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genes, brain and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kadar, E.</au><au>Aldavert‐Vera, L.</au><au>Huguet, G.</au><au>Costa‐Miserachs, D.</au><au>Morgado‐Bernal, I.</au><au>Segura‐Torres, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracranial self‐stimulation induces expression of learning and memory‐related genes in rat amygdala</atitle><jtitle>Genes, brain and behavior</jtitle><addtitle>Genes Brain Behav</addtitle><date>2011-02</date><risdate>2011</risdate><volume>10</volume><issue>1</issue><spage>69</spage><epage>77</epage><pages>69-77</pages><issn>1601-1848</issn><eissn>1601-183X</eissn><coden>GBBEAO</coden><abstract>Intracranial self‐stimulation (ICSS) in the lateral hypothalamus improves memory when administered immediately after a training session. In our laboratory, ICSS has been shown as a very reliable way to increase two‐way active avoidance (TWAA) conditioning, an amygdala‐dependent task. The aim of this work was to study, in the rat amygdala, anatomical and molecular aspects of ICSS, using the same parameters facilitating TWAA. First, we examined the activation of ipsilateral and contralateral lateral (LA) and basolateral (BLA) amygdala, the main amygdalar regions involved in the TWAA, by the immunohistochemical determination of c‐Fos protein expression. Second, we tested the effects of the ICSS treatment on the expression of 14 genes related to learning and memory processes using real‐time polymerase chain reaction. Results showed a bilateral increase in c‐Fos protein expression in LA and BLA nuclei after ICSS treatment. We also found that Fos, brain‐derived nerve growth factor (BDNF), Arc, inducible cAMP early repressor (ICER), COX‐2, Dnajb1, FKpb5 and Ret genes were upregulated in the amygdala 90 min and 4.5 h post ICSS. From this set of genes, BDNF, Arc and ICER are functionally associated with the cAMP‐responsive element‐mediated gene transcription molecular pathway that plays a pivotal role in memory, whereas Dnajb1 and Ret are associated with protein folding required for plasticity or neuroprotection. Our results suggest that ICSS induces expression of genes related with synaptic plasticity and protein folding functions in the rat amygdaloid area, which may be involved in the molecular mechanisms by which ICSS may improve or restore memory functions related to this brain structure.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20969727</pmid><doi>10.1111/j.1601-183X.2010.00609.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1601-1848
ispartof Genes, brain and behavior, 2011-02, Vol.10 (1), p.69-77
issn 1601-1848
1601-183X
language eng
recordid cdi_proquest_miscellaneous_860372875
source Wiley-Blackwell Open Access Titles
subjects Amygdala
Amygdala - physiology
Animals
Brain - physiology
Brain-derived neurotrophic factor
Brain-Derived Neurotrophic Factor - genetics
Brain-Derived Neurotrophic Factor - physiology
c-Fos protein
Cyclic AMP
Cyclic AMP Response Element Modulator - genetics
Cyclooxygenase-2
Cytoskeletal Proteins - genetics
DNA, Complementary - biosynthesis
DNA, Complementary - genetics
Electric Stimulation
Gene Expression Regulation - genetics
Gene Expression Regulation - physiology
Genes
Hypothalamus (lateral)
ICSS
Image Processing, Computer-Assisted
Immunohistochemistry
Intracranial self-stimulation
Learning
Learning - physiology
Male
Memory
Memory - physiology
Molecular modelling
Nerve growth factor
Nerve Tissue Proteins - genetics
Neuroprotection
Plasticity (synaptic)
Polymerase chain reaction
Protein expression
Protein folding
Proto-Oncogene Proteins c-fos - metabolism
Rats
Rats, Wistar
real‐time PCR
Recovery of function
Repressors
Reverse Transcriptase Polymerase Chain Reaction
RNA - biosynthesis
RNA - genetics
Rodents
Self Stimulation
Stereotaxic Techniques
synaptic plasticity
Transcription
title Intracranial self‐stimulation induces expression of learning and memory‐related genes in rat amygdala
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A43%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracranial%20self%E2%80%90stimulation%20induces%20expression%20of%20learning%20and%20memory%E2%80%90related%20genes%20in%20rat%20amygdala&rft.jtitle=Genes,%20brain%20and%20behavior&rft.au=Kadar,%20E.&rft.date=2011-02&rft.volume=10&rft.issue=1&rft.spage=69&rft.epage=77&rft.pages=69-77&rft.issn=1601-1848&rft.eissn=1601-183X&rft.coden=GBBEAO&rft_id=info:doi/10.1111/j.1601-183X.2010.00609.x&rft_dat=%3Cproquest_24P%3E3278328471%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1517353459&rft_id=info:pmid/20969727&rfr_iscdi=true