Optimization of Spore and Antifungal Lipopeptide Production During the Solid-state Fermentation of Bacillus subtilis

Bacillus subtilis strain TrigoCor 1448 was grown on wheat middlings in 0.5-l solid-state fermentation (SSF) bioreactors for the production of an antifungal biological control agent. Total antifungal activity was quantified using a 96-well microplate bioassay against the plant pathogen Fusarium oxysp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2007-10, Vol.143 (1), p.63-79
Hauptverfasser: Pryor, S.W, Gibson, D.M, Hay, A.G, Gossett, J.M, Walker, L.P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79
container_issue 1
container_start_page 63
container_title Applied biochemistry and biotechnology
container_volume 143
creator Pryor, S.W
Gibson, D.M
Hay, A.G
Gossett, J.M
Walker, L.P
description Bacillus subtilis strain TrigoCor 1448 was grown on wheat middlings in 0.5-l solid-state fermentation (SSF) bioreactors for the production of an antifungal biological control agent. Total antifungal activity was quantified using a 96-well microplate bioassay against the plant pathogen Fusarium oxysporum f. sp. melonis. The experimental design for process optimization consisted of a 2⁶⁻¹ fractional factorial design followed by a central composite face-centered design. Initial SSF parameters included in the optimization were aeration, fermentation length, pH buffering, peptone addition, nitrate addition, and incubator temperature. Central composite face-centered design parameters included incubator temperature, aeration rate, and initial moisture content (MC). Optimized fermentation conditions were determined with response surface models fitted for both spore concentration and activity of biological control product extracts. Models showed that activity measurements and spore production were most sensitive to substrate MC with highest levels of each response variable occurring at maximum moisture levels. Whereas maximum antifungal activity was seen in a limited area of the design space, spore production was fairly robust with near maximum levels occurring over a wider range of fermentation conditions. Optimization resulted in a 55% increase in inhibition and a 40% increase in spore production over nonoptimized conditions.
doi_str_mv 10.1007/s12010-007-0036-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_860372391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20603416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-b52a019ae2e4419c92b4b0e63b3d06ff3575cdcb28fa407bc8f9fbf6e69cedfa3</originalsourceid><addsrcrecordid>eNqF0k2PFCEQBmBiNO64-gO8KDFRT61VQH9wXFdXTSZZk3HPhKZhZNPTtEAf9NdLOxM38aAHQh0eiiIvhDxFeIMA7duEDBCqUpbFmwrvkQ3WtayASbxPNsBaXjHWyTPyKKVbAGRd3T4kZ9gBK67dkHw9Z3_wP3X2YaLB0d0coqV6GujFlL1bpr0e6dbPYbZFDpZ-iWFYzG_-fol-2tP8zdJdGP1QpayzpVc2HuyU_7R8p40fxyXRtPTZjz49Jg-cHpN9ctrPyc3Vh6-Xn6rt9cfPlxfbygjBc9XXTANKbZkVAqWRrBc92Ib3fIDGOV63tRlMzzqnBbS96Zx0vWtsI40dnObn5PWx7xzD98WmrA4-GTuOerJhSaprgLeMSyzy1T9l09Wslkz8FzIoPQU2Bb74C96GJU7luQpli1gj8ILwiEwMKUXr1Bz9QccfCkGtEatjxGot14jVOuqzU-OlP9jh7sQp0wJenoBORo8u6sn4dOckAynYOuHzo3M6KL2Pxdzsym0cQJafIlr-C9BmuNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197115103</pqid></control><display><type>article</type><title>Optimization of Spore and Antifungal Lipopeptide Production During the Solid-state Fermentation of Bacillus subtilis</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><creator>Pryor, S.W ; Gibson, D.M ; Hay, A.G ; Gossett, J.M ; Walker, L.P</creator><creatorcontrib>Pryor, S.W ; Gibson, D.M ; Hay, A.G ; Gossett, J.M ; Walker, L.P</creatorcontrib><description>Bacillus subtilis strain TrigoCor 1448 was grown on wheat middlings in 0.5-l solid-state fermentation (SSF) bioreactors for the production of an antifungal biological control agent. Total antifungal activity was quantified using a 96-well microplate bioassay against the plant pathogen Fusarium oxysporum f. sp. melonis. The experimental design for process optimization consisted of a 2⁶⁻¹ fractional factorial design followed by a central composite face-centered design. Initial SSF parameters included in the optimization were aeration, fermentation length, pH buffering, peptone addition, nitrate addition, and incubator temperature. Central composite face-centered design parameters included incubator temperature, aeration rate, and initial moisture content (MC). Optimized fermentation conditions were determined with response surface models fitted for both spore concentration and activity of biological control product extracts. Models showed that activity measurements and spore production were most sensitive to substrate MC with highest levels of each response variable occurring at maximum moisture levels. Whereas maximum antifungal activity was seen in a limited area of the design space, spore production was fairly robust with near maximum levels occurring over a wider range of fermentation conditions. Optimization resulted in a 55% increase in inhibition and a 40% increase in spore production over nonoptimized conditions.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-007-0036-1</identifier><identifier>PMID: 18025597</identifier><identifier>CODEN: ABIBDL</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Aeration ; Antifungal Agents - metabolism ; antifungal properties ; Artocarpus ; Aspergillus ; Aspergillus niger ; Bacillus subtilis ; Bacillus subtilis - metabolism ; Bacteria ; bacterial spores ; Bioassays ; Biological and medical sciences ; Biological control ; biological control agents ; Biomass ; Bioreactors ; Bioreactors - standards ; Biotechnology ; buffers ; Eukaryota ; Experimental design ; Fermentation ; Fundamental and applied biological sciences. Psychology ; fungicides ; Fusarium oxysporum ; Fusarium oxysporum f. sp. melonis ; industrial microbiology ; lipoproteins ; Lipoproteins - biosynthesis ; Melonis ; microbial activity ; Microbiology ; middlings ; Moisture content ; Monascus ; nitrates ; Optimization ; Peptones ; plant pathogenic fungi ; simulation models ; solid state fermentation ; Spores, Bacterial - metabolism ; strains ; temperature ; Triticum ; Triticum aestivum ; water content ; wheat</subject><ispartof>Applied biochemistry and biotechnology, 2007-10, Vol.143 (1), p.63-79</ispartof><rights>2007 INIST-CNRS</rights><rights>Humana Press 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-b52a019ae2e4419c92b4b0e63b3d06ff3575cdcb28fa407bc8f9fbf6e69cedfa3</citedby><cites>FETCH-LOGICAL-c443t-b52a019ae2e4419c92b4b0e63b3d06ff3575cdcb28fa407bc8f9fbf6e69cedfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19209426$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18025597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pryor, S.W</creatorcontrib><creatorcontrib>Gibson, D.M</creatorcontrib><creatorcontrib>Hay, A.G</creatorcontrib><creatorcontrib>Gossett, J.M</creatorcontrib><creatorcontrib>Walker, L.P</creatorcontrib><title>Optimization of Spore and Antifungal Lipopeptide Production During the Solid-state Fermentation of Bacillus subtilis</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><description>Bacillus subtilis strain TrigoCor 1448 was grown on wheat middlings in 0.5-l solid-state fermentation (SSF) bioreactors for the production of an antifungal biological control agent. Total antifungal activity was quantified using a 96-well microplate bioassay against the plant pathogen Fusarium oxysporum f. sp. melonis. The experimental design for process optimization consisted of a 2⁶⁻¹ fractional factorial design followed by a central composite face-centered design. Initial SSF parameters included in the optimization were aeration, fermentation length, pH buffering, peptone addition, nitrate addition, and incubator temperature. Central composite face-centered design parameters included incubator temperature, aeration rate, and initial moisture content (MC). Optimized fermentation conditions were determined with response surface models fitted for both spore concentration and activity of biological control product extracts. Models showed that activity measurements and spore production were most sensitive to substrate MC with highest levels of each response variable occurring at maximum moisture levels. Whereas maximum antifungal activity was seen in a limited area of the design space, spore production was fairly robust with near maximum levels occurring over a wider range of fermentation conditions. Optimization resulted in a 55% increase in inhibition and a 40% increase in spore production over nonoptimized conditions.</description><subject>Aeration</subject><subject>Antifungal Agents - metabolism</subject><subject>antifungal properties</subject><subject>Artocarpus</subject><subject>Aspergillus</subject><subject>Aspergillus niger</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacteria</subject><subject>bacterial spores</subject><subject>Bioassays</subject><subject>Biological and medical sciences</subject><subject>Biological control</subject><subject>biological control agents</subject><subject>Biomass</subject><subject>Bioreactors</subject><subject>Bioreactors - standards</subject><subject>Biotechnology</subject><subject>buffers</subject><subject>Eukaryota</subject><subject>Experimental design</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>fungicides</subject><subject>Fusarium oxysporum</subject><subject>Fusarium oxysporum f. sp. melonis</subject><subject>industrial microbiology</subject><subject>lipoproteins</subject><subject>Lipoproteins - biosynthesis</subject><subject>Melonis</subject><subject>microbial activity</subject><subject>Microbiology</subject><subject>middlings</subject><subject>Moisture content</subject><subject>Monascus</subject><subject>nitrates</subject><subject>Optimization</subject><subject>Peptones</subject><subject>plant pathogenic fungi</subject><subject>simulation models</subject><subject>solid state fermentation</subject><subject>Spores, Bacterial - metabolism</subject><subject>strains</subject><subject>temperature</subject><subject>Triticum</subject><subject>Triticum aestivum</subject><subject>water content</subject><subject>wheat</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0k2PFCEQBmBiNO64-gO8KDFRT61VQH9wXFdXTSZZk3HPhKZhZNPTtEAf9NdLOxM38aAHQh0eiiIvhDxFeIMA7duEDBCqUpbFmwrvkQ3WtayASbxPNsBaXjHWyTPyKKVbAGRd3T4kZ9gBK67dkHw9Z3_wP3X2YaLB0d0coqV6GujFlL1bpr0e6dbPYbZFDpZ-iWFYzG_-fol-2tP8zdJdGP1QpayzpVc2HuyU_7R8p40fxyXRtPTZjz49Jg-cHpN9ctrPyc3Vh6-Xn6rt9cfPlxfbygjBc9XXTANKbZkVAqWRrBc92Ib3fIDGOV63tRlMzzqnBbS96Zx0vWtsI40dnObn5PWx7xzD98WmrA4-GTuOerJhSaprgLeMSyzy1T9l09Wslkz8FzIoPQU2Bb74C96GJU7luQpli1gj8ILwiEwMKUXr1Bz9QccfCkGtEatjxGot14jVOuqzU-OlP9jh7sQp0wJenoBORo8u6sn4dOckAynYOuHzo3M6KL2Pxdzsym0cQJafIlr-C9BmuNk</recordid><startdate>20071001</startdate><enddate>20071001</enddate><creator>Pryor, S.W</creator><creator>Gibson, D.M</creator><creator>Hay, A.G</creator><creator>Gossett, J.M</creator><creator>Walker, L.P</creator><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7QO</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>20071001</creationdate><title>Optimization of Spore and Antifungal Lipopeptide Production During the Solid-state Fermentation of Bacillus subtilis</title><author>Pryor, S.W ; Gibson, D.M ; Hay, A.G ; Gossett, J.M ; Walker, L.P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-b52a019ae2e4419c92b4b0e63b3d06ff3575cdcb28fa407bc8f9fbf6e69cedfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aeration</topic><topic>Antifungal Agents - metabolism</topic><topic>antifungal properties</topic><topic>Artocarpus</topic><topic>Aspergillus</topic><topic>Aspergillus niger</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacteria</topic><topic>bacterial spores</topic><topic>Bioassays</topic><topic>Biological and medical sciences</topic><topic>Biological control</topic><topic>biological control agents</topic><topic>Biomass</topic><topic>Bioreactors</topic><topic>Bioreactors - standards</topic><topic>Biotechnology</topic><topic>buffers</topic><topic>Eukaryota</topic><topic>Experimental design</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>fungicides</topic><topic>Fusarium oxysporum</topic><topic>Fusarium oxysporum f. sp. melonis</topic><topic>industrial microbiology</topic><topic>lipoproteins</topic><topic>Lipoproteins - biosynthesis</topic><topic>Melonis</topic><topic>microbial activity</topic><topic>Microbiology</topic><topic>middlings</topic><topic>Moisture content</topic><topic>Monascus</topic><topic>nitrates</topic><topic>Optimization</topic><topic>Peptones</topic><topic>plant pathogenic fungi</topic><topic>simulation models</topic><topic>solid state fermentation</topic><topic>Spores, Bacterial - metabolism</topic><topic>strains</topic><topic>temperature</topic><topic>Triticum</topic><topic>Triticum aestivum</topic><topic>water content</topic><topic>wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pryor, S.W</creatorcontrib><creatorcontrib>Gibson, D.M</creatorcontrib><creatorcontrib>Hay, A.G</creatorcontrib><creatorcontrib>Gossett, J.M</creatorcontrib><creatorcontrib>Walker, L.P</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pryor, S.W</au><au>Gibson, D.M</au><au>Hay, A.G</au><au>Gossett, J.M</au><au>Walker, L.P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Spore and Antifungal Lipopeptide Production During the Solid-state Fermentation of Bacillus subtilis</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2007-10-01</date><risdate>2007</risdate><volume>143</volume><issue>1</issue><spage>63</spage><epage>79</epage><pages>63-79</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><coden>ABIBDL</coden><abstract>Bacillus subtilis strain TrigoCor 1448 was grown on wheat middlings in 0.5-l solid-state fermentation (SSF) bioreactors for the production of an antifungal biological control agent. Total antifungal activity was quantified using a 96-well microplate bioassay against the plant pathogen Fusarium oxysporum f. sp. melonis. The experimental design for process optimization consisted of a 2⁶⁻¹ fractional factorial design followed by a central composite face-centered design. Initial SSF parameters included in the optimization were aeration, fermentation length, pH buffering, peptone addition, nitrate addition, and incubator temperature. Central composite face-centered design parameters included incubator temperature, aeration rate, and initial moisture content (MC). Optimized fermentation conditions were determined with response surface models fitted for both spore concentration and activity of biological control product extracts. Models showed that activity measurements and spore production were most sensitive to substrate MC with highest levels of each response variable occurring at maximum moisture levels. Whereas maximum antifungal activity was seen in a limited area of the design space, spore production was fairly robust with near maximum levels occurring over a wider range of fermentation conditions. Optimization resulted in a 55% increase in inhibition and a 40% increase in spore production over nonoptimized conditions.</abstract><cop>Heidelberg</cop><pub>Springer</pub><pmid>18025597</pmid><doi>10.1007/s12010-007-0036-1</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-2289
ispartof Applied biochemistry and biotechnology, 2007-10, Vol.143 (1), p.63-79
issn 0273-2289
1559-0291
language eng
recordid cdi_proquest_miscellaneous_860372391
source MEDLINE; SpringerLink (Online service)
subjects Aeration
Antifungal Agents - metabolism
antifungal properties
Artocarpus
Aspergillus
Aspergillus niger
Bacillus subtilis
Bacillus subtilis - metabolism
Bacteria
bacterial spores
Bioassays
Biological and medical sciences
Biological control
biological control agents
Biomass
Bioreactors
Bioreactors - standards
Biotechnology
buffers
Eukaryota
Experimental design
Fermentation
Fundamental and applied biological sciences. Psychology
fungicides
Fusarium oxysporum
Fusarium oxysporum f. sp. melonis
industrial microbiology
lipoproteins
Lipoproteins - biosynthesis
Melonis
microbial activity
Microbiology
middlings
Moisture content
Monascus
nitrates
Optimization
Peptones
plant pathogenic fungi
simulation models
solid state fermentation
Spores, Bacterial - metabolism
strains
temperature
Triticum
Triticum aestivum
water content
wheat
title Optimization of Spore and Antifungal Lipopeptide Production During the Solid-state Fermentation of Bacillus subtilis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A21%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Spore%20and%20Antifungal%20Lipopeptide%20Production%20During%20the%20Solid-state%20Fermentation%20of%20Bacillus%20subtilis&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Pryor,%20S.W&rft.date=2007-10-01&rft.volume=143&rft.issue=1&rft.spage=63&rft.epage=79&rft.pages=63-79&rft.issn=0273-2289&rft.eissn=1559-0291&rft.coden=ABIBDL&rft_id=info:doi/10.1007/s12010-007-0036-1&rft_dat=%3Cproquest_cross%3E20603416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197115103&rft_id=info:pmid/18025597&rfr_iscdi=true