Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex

Two key models for examining activity-dependent development of primary visual cortex (V1) involve either reduction of activity in both eyes via dark-rearing (DR) or imbalance of activity between the two eyes via monocular deprivation (MD). Combining DNA microarray analysis with computational approac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2006-05, Vol.9 (5), p.660-668
Hauptverfasser: Tropea, Daniela, Kreiman, Gabriel, Lyckman, Alvin, Mukherjee, Sayan, Yu, Hongbo, Horng, Sam, Sur, Mriganka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 668
container_issue 5
container_start_page 660
container_title Nature neuroscience
container_volume 9
creator Tropea, Daniela
Kreiman, Gabriel
Lyckman, Alvin
Mukherjee, Sayan
Yu, Hongbo
Horng, Sam
Sur, Mriganka
description Two key models for examining activity-dependent development of primary visual cortex (V1) involve either reduction of activity in both eyes via dark-rearing (DR) or imbalance of activity between the two eyes via monocular deprivation (MD). Combining DNA microarray analysis with computational approaches, RT-PCR, immunohistochemistry and physiological imaging, we find that DR leads to (i) upregulation of genes subserving synaptic transmission and electrical activity, consistent with a coordinated response of cortical neurons to reduction of visual drive, and (ii) downregulation of parvalbumin expression, implicating parvalbumin-expressing interneurons as underlying the delay in cortical maturation after DR. MD partially activates homeostatic mechanisms but differentially upregulates molecular pathways related to growth factors and neuronal degeneration, consistent with reorganization of connections after MD. Expression of a binding protein of insulin-like growth factor-1 (IGF1) is highly upregulated after MD, and exogenous application of IGF1 prevents the physiological effects of MD on ocular dominance plasticity examined in vivo .
doi_str_mv 10.1038/nn1689
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_860372001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185536877</galeid><sourcerecordid>A185536877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-62bfa7fd34ae317c9914f0cda0ab028f3d584671fd371d36f8cbed40bcc9683a3</originalsourceid><addsrcrecordid>eNqFksFq3DAQhkVpadK0fYQiemjpwalk2ZJ8DKFNAoFC0p7NWBo7CrbsSnKaffsq7MKSHBJ0kJj5Zvhn9BPykbNjzoT-7j2XunlFDnldyYKrUr7Ob9aoQpa1PCDvYrxljKlaN2_JAZdSCFGJQzKcoUeK90vAGN3sqbkBP2Ck4C2d5hHNOkKgC6Sbf7CJdELrIDk_UDDJ3bm0KSwu6C36RJcRYnImB6nz9M7FFUZq5pDw_j1508MY8cPuPiJ_fv74fXpeXP46uzg9uSxMpcqUxXY9qN6KClBwZZqGVz0zFhh0rNS9sLWupOKZUNwK2WvToa1YZ0wjtQBxRL5u-y5h_rtiTO3kosFxBI_zGlstmVAlYzyTX54lpWqYVKp6EeSK60bwJoOfn4C38xp8HrctVaV4zZnO0PEWGmDE1vl-TgFMPhYnZ2aPvcvxE67rWkitVC749qggM3mfaYA1xvbi-uoxu5NqwhxjwL5dgpsgbFrO2geftFufZPDTTura5S_dYztj7PcYcyobIuxnedLqP4QjxSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274715108</pqid></control><display><type>article</type><title>Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tropea, Daniela ; Kreiman, Gabriel ; Lyckman, Alvin ; Mukherjee, Sayan ; Yu, Hongbo ; Horng, Sam ; Sur, Mriganka</creator><creatorcontrib>Tropea, Daniela ; Kreiman, Gabriel ; Lyckman, Alvin ; Mukherjee, Sayan ; Yu, Hongbo ; Horng, Sam ; Sur, Mriganka</creatorcontrib><description>Two key models for examining activity-dependent development of primary visual cortex (V1) involve either reduction of activity in both eyes via dark-rearing (DR) or imbalance of activity between the two eyes via monocular deprivation (MD). Combining DNA microarray analysis with computational approaches, RT-PCR, immunohistochemistry and physiological imaging, we find that DR leads to (i) upregulation of genes subserving synaptic transmission and electrical activity, consistent with a coordinated response of cortical neurons to reduction of visual drive, and (ii) downregulation of parvalbumin expression, implicating parvalbumin-expressing interneurons as underlying the delay in cortical maturation after DR. MD partially activates homeostatic mechanisms but differentially upregulates molecular pathways related to growth factors and neuronal degeneration, consistent with reorganization of connections after MD. Expression of a binding protein of insulin-like growth factor-1 (IGF1) is highly upregulated after MD, and exogenous application of IGF1 prevents the physiological effects of MD on ocular dominance plasticity examined in vivo .</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn1689</identifier><identifier>PMID: 16633343</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Animal Genetics and Genomics ; Animals ; Animals, Newborn ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Darkness ; Gene expression ; Gene Expression Regulation - physiology ; Immunohistochemistry - methods ; Mice ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurobiology ; Neuronal Plasticity - physiology ; Neuroplasticity ; Neurosciences ; Oligonucleotide Array Sequence Analysis - methods ; Physiological aspects ; Reverse Transcriptase Polymerase Chain Reaction - methods ; RNA, Messenger - metabolism ; Sensory Deprivation - physiology ; Signal Transduction - physiology ; Vision, Binocular - physiology ; Vision, Monocular - physiology ; Visual cortex ; Visual Cortex - cytology ; Visual Cortex - physiology ; Visual Pathways - physiology</subject><ispartof>Nature neuroscience, 2006-05, Vol.9 (5), p.660-668</ispartof><rights>Springer Nature America, Inc. 2006</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group May 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-62bfa7fd34ae317c9914f0cda0ab028f3d584671fd371d36f8cbed40bcc9683a3</citedby><cites>FETCH-LOGICAL-c472t-62bfa7fd34ae317c9914f0cda0ab028f3d584671fd371d36f8cbed40bcc9683a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn1689$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn1689$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16633343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tropea, Daniela</creatorcontrib><creatorcontrib>Kreiman, Gabriel</creatorcontrib><creatorcontrib>Lyckman, Alvin</creatorcontrib><creatorcontrib>Mukherjee, Sayan</creatorcontrib><creatorcontrib>Yu, Hongbo</creatorcontrib><creatorcontrib>Horng, Sam</creatorcontrib><creatorcontrib>Sur, Mriganka</creatorcontrib><title>Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Two key models for examining activity-dependent development of primary visual cortex (V1) involve either reduction of activity in both eyes via dark-rearing (DR) or imbalance of activity between the two eyes via monocular deprivation (MD). Combining DNA microarray analysis with computational approaches, RT-PCR, immunohistochemistry and physiological imaging, we find that DR leads to (i) upregulation of genes subserving synaptic transmission and electrical activity, consistent with a coordinated response of cortical neurons to reduction of visual drive, and (ii) downregulation of parvalbumin expression, implicating parvalbumin-expressing interneurons as underlying the delay in cortical maturation after DR. MD partially activates homeostatic mechanisms but differentially upregulates molecular pathways related to growth factors and neuronal degeneration, consistent with reorganization of connections after MD. Expression of a binding protein of insulin-like growth factor-1 (IGF1) is highly upregulated after MD, and exogenous application of IGF1 prevents the physiological effects of MD on ocular dominance plasticity examined in vivo .</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Darkness</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - physiology</subject><subject>Immunohistochemistry - methods</subject><subject>Mice</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurobiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neuroplasticity</subject><subject>Neurosciences</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Physiological aspects</subject><subject>Reverse Transcriptase Polymerase Chain Reaction - methods</subject><subject>RNA, Messenger - metabolism</subject><subject>Sensory Deprivation - physiology</subject><subject>Signal Transduction - physiology</subject><subject>Vision, Binocular - physiology</subject><subject>Vision, Monocular - physiology</subject><subject>Visual cortex</subject><subject>Visual Cortex - cytology</subject><subject>Visual Cortex - physiology</subject><subject>Visual Pathways - physiology</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFksFq3DAQhkVpadK0fYQiemjpwalk2ZJ8DKFNAoFC0p7NWBo7CrbsSnKaffsq7MKSHBJ0kJj5Zvhn9BPykbNjzoT-7j2XunlFDnldyYKrUr7Ob9aoQpa1PCDvYrxljKlaN2_JAZdSCFGJQzKcoUeK90vAGN3sqbkBP2Ck4C2d5hHNOkKgC6Sbf7CJdELrIDk_UDDJ3bm0KSwu6C36RJcRYnImB6nz9M7FFUZq5pDw_j1508MY8cPuPiJ_fv74fXpeXP46uzg9uSxMpcqUxXY9qN6KClBwZZqGVz0zFhh0rNS9sLWupOKZUNwK2WvToa1YZ0wjtQBxRL5u-y5h_rtiTO3kosFxBI_zGlstmVAlYzyTX54lpWqYVKp6EeSK60bwJoOfn4C38xp8HrctVaV4zZnO0PEWGmDE1vl-TgFMPhYnZ2aPvcvxE67rWkitVC749qggM3mfaYA1xvbi-uoxu5NqwhxjwL5dgpsgbFrO2geftFufZPDTTura5S_dYztj7PcYcyobIuxnedLqP4QjxSA</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Tropea, Daniela</creator><creator>Kreiman, Gabriel</creator><creator>Lyckman, Alvin</creator><creator>Mukherjee, Sayan</creator><creator>Yu, Hongbo</creator><creator>Horng, Sam</creator><creator>Sur, Mriganka</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20060501</creationdate><title>Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex</title><author>Tropea, Daniela ; Kreiman, Gabriel ; Lyckman, Alvin ; Mukherjee, Sayan ; Yu, Hongbo ; Horng, Sam ; Sur, Mriganka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-62bfa7fd34ae317c9914f0cda0ab028f3d584671fd371d36f8cbed40bcc9683a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Darkness</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - physiology</topic><topic>Immunohistochemistry - methods</topic><topic>Mice</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurobiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neuroplasticity</topic><topic>Neurosciences</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Physiological aspects</topic><topic>Reverse Transcriptase Polymerase Chain Reaction - methods</topic><topic>RNA, Messenger - metabolism</topic><topic>Sensory Deprivation - physiology</topic><topic>Signal Transduction - physiology</topic><topic>Vision, Binocular - physiology</topic><topic>Vision, Monocular - physiology</topic><topic>Visual cortex</topic><topic>Visual Cortex - cytology</topic><topic>Visual Cortex - physiology</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tropea, Daniela</creatorcontrib><creatorcontrib>Kreiman, Gabriel</creatorcontrib><creatorcontrib>Lyckman, Alvin</creatorcontrib><creatorcontrib>Mukherjee, Sayan</creatorcontrib><creatorcontrib>Yu, Hongbo</creatorcontrib><creatorcontrib>Horng, Sam</creatorcontrib><creatorcontrib>Sur, Mriganka</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tropea, Daniela</au><au>Kreiman, Gabriel</au><au>Lyckman, Alvin</au><au>Mukherjee, Sayan</au><au>Yu, Hongbo</au><au>Horng, Sam</au><au>Sur, Mriganka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2006-05-01</date><risdate>2006</risdate><volume>9</volume><issue>5</issue><spage>660</spage><epage>668</epage><pages>660-668</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>Two key models for examining activity-dependent development of primary visual cortex (V1) involve either reduction of activity in both eyes via dark-rearing (DR) or imbalance of activity between the two eyes via monocular deprivation (MD). Combining DNA microarray analysis with computational approaches, RT-PCR, immunohistochemistry and physiological imaging, we find that DR leads to (i) upregulation of genes subserving synaptic transmission and electrical activity, consistent with a coordinated response of cortical neurons to reduction of visual drive, and (ii) downregulation of parvalbumin expression, implicating parvalbumin-expressing interneurons as underlying the delay in cortical maturation after DR. MD partially activates homeostatic mechanisms but differentially upregulates molecular pathways related to growth factors and neuronal degeneration, consistent with reorganization of connections after MD. Expression of a binding protein of insulin-like growth factor-1 (IGF1) is highly upregulated after MD, and exogenous application of IGF1 prevents the physiological effects of MD on ocular dominance plasticity examined in vivo .</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>16633343</pmid><doi>10.1038/nn1689</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2006-05, Vol.9 (5), p.660-668
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_860372001
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Animal Genetics and Genomics
Animals
Animals, Newborn
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Darkness
Gene expression
Gene Expression Regulation - physiology
Immunohistochemistry - methods
Mice
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neurobiology
Neuronal Plasticity - physiology
Neuroplasticity
Neurosciences
Oligonucleotide Array Sequence Analysis - methods
Physiological aspects
Reverse Transcriptase Polymerase Chain Reaction - methods
RNA, Messenger - metabolism
Sensory Deprivation - physiology
Signal Transduction - physiology
Vision, Binocular - physiology
Vision, Monocular - physiology
Visual cortex
Visual Cortex - cytology
Visual Cortex - physiology
Visual Pathways - physiology
title Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20expression%20changes%20and%20molecular%20pathways%20mediating%20activity-dependent%20plasticity%20in%20visual%20cortex&rft.jtitle=Nature%20neuroscience&rft.au=Tropea,%20Daniela&rft.date=2006-05-01&rft.volume=9&rft.issue=5&rft.spage=660&rft.epage=668&rft.pages=660-668&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn1689&rft_dat=%3Cgale_proqu%3EA185536877%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274715108&rft_id=info:pmid/16633343&rft_galeid=A185536877&rfr_iscdi=true