Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models

This paper proposes a novel price forecasting method based on wavelet transform combined with ARIMA and GARCH models. By wavelet transform, the historical price series is decomposed and reconstructed into one approximation series and some detail series. Then each subseries can be separately predicte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2010-11, Vol.87 (11), p.3606-3610
Hauptverfasser: Tan, Zhongfu, Zhang, Jinliang, Wang, Jianhui, Xu, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3610
container_issue 11
container_start_page 3606
container_title Applied energy
container_volume 87
creator Tan, Zhongfu
Zhang, Jinliang
Wang, Jianhui
Xu, Jun
description This paper proposes a novel price forecasting method based on wavelet transform combined with ARIMA and GARCH models. By wavelet transform, the historical price series is decomposed and reconstructed into one approximation series and some detail series. Then each subseries can be separately predicted by a suitable time series model. The final forecast is obtained by composing the forecasted results of each subseries. This proposed method is examined on Spanish and PJM electricity markets and compared with some other forecasting methods.
doi_str_mv 10.1016/j.apenergy.2010.05.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_860368010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261910001807</els_id><sourcerecordid>860368010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-58ce944005a967a677593962e849507f83a34c6178a094a3ac190e53f4a33ecb3</originalsourceid><addsrcrecordid>eNqFkU1v2zAMho1hA5p1_QuFLsNOzijLlu3bgqxrC7QYUKxngZXpRoG_Jikp_O9HL12vO5ASxPclqIdJcilhLUHqr_s1TjSQf57XGfAjFGuQ2btkJasyS2spq_fJChToNNOyPks-hrAHgExmsEqa7zinuCNsBHVko3fWxVlMfJJoR08WQ3TDsziEJb_gkWVRRI9D4HIv7Ng_uYEa8eLiTmwebu83AodGXG8etjeiHxvqwqfkQ4tdoIvX8zx5_HH1a3uT3v28vt1u7lKb53lMi8pSnecABda6RF2WRa1qnVGV1wWUbaVQ5VbLskKoc1RoZQ1UqJbviuyTOk--nPpOfvx9oBBN74KlrsOBxkMwlQalK2bESn1SWj-G4Kk1_OMe_WwkmIWq2Zt_VM1C1UBhmCob709GTxPZNxcR4bTozdEorEpOM8dfp0LHISWniUNp0EZpLuxiz_0-v46MwWLXMlfrwlvfTMllUyXrvp10jJOOjrwJ1tFgqXG8o2ia0f1v9D8G86m5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860368010</pqid></control><display><type>article</type><title>Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Tan, Zhongfu ; Zhang, Jinliang ; Wang, Jianhui ; Xu, Jun</creator><creatorcontrib>Tan, Zhongfu ; Zhang, Jinliang ; Wang, Jianhui ; Xu, Jun</creatorcontrib><description>This paper proposes a novel price forecasting method based on wavelet transform combined with ARIMA and GARCH models. By wavelet transform, the historical price series is decomposed and reconstructed into one approximation series and some detail series. Then each subseries can be separately predicted by a suitable time series model. The final forecast is obtained by composing the forecasted results of each subseries. This proposed method is examined on Spanish and PJM electricity markets and compared with some other forecasting methods.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2010.05.012</identifier><identifier>CODEN: APENDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Approximation ; ARIMA ; Composing ; Economic data ; Electric energy ; Electricity ; Energy ; Energy economics ; Exact sciences and technology ; Forecasting ; GARCH ; General, economic and professional studies ; Mathematical analysis ; Mathematical models ; Methodology. Modelling ; Price forecasting ; Price forecasting Wavelet transform ARIMA GARCH ; Time series ; Wavelet transform ; Wavelet transforms</subject><ispartof>Applied energy, 2010-11, Vol.87 (11), p.3606-3610</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-58ce944005a967a677593962e849507f83a34c6178a094a3ac190e53f4a33ecb3</citedby><cites>FETCH-LOGICAL-c444t-58ce944005a967a677593962e849507f83a34c6178a094a3ac190e53f4a33ecb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apenergy.2010.05.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,3993,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23100217$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeappene/v_3a87_3ay_3a2010_3ai_3a11_3ap_3a3606-3610.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Zhongfu</creatorcontrib><creatorcontrib>Zhang, Jinliang</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><title>Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models</title><title>Applied energy</title><description>This paper proposes a novel price forecasting method based on wavelet transform combined with ARIMA and GARCH models. By wavelet transform, the historical price series is decomposed and reconstructed into one approximation series and some detail series. Then each subseries can be separately predicted by a suitable time series model. The final forecast is obtained by composing the forecasted results of each subseries. This proposed method is examined on Spanish and PJM electricity markets and compared with some other forecasting methods.</description><subject>Applied sciences</subject><subject>Approximation</subject><subject>ARIMA</subject><subject>Composing</subject><subject>Economic data</subject><subject>Electric energy</subject><subject>Electricity</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Exact sciences and technology</subject><subject>Forecasting</subject><subject>GARCH</subject><subject>General, economic and professional studies</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methodology. Modelling</subject><subject>Price forecasting</subject><subject>Price forecasting Wavelet transform ARIMA GARCH</subject><subject>Time series</subject><subject>Wavelet transform</subject><subject>Wavelet transforms</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkU1v2zAMho1hA5p1_QuFLsNOzijLlu3bgqxrC7QYUKxngZXpRoG_Jikp_O9HL12vO5ASxPclqIdJcilhLUHqr_s1TjSQf57XGfAjFGuQ2btkJasyS2spq_fJChToNNOyPks-hrAHgExmsEqa7zinuCNsBHVko3fWxVlMfJJoR08WQ3TDsziEJb_gkWVRRI9D4HIv7Ng_uYEa8eLiTmwebu83AodGXG8etjeiHxvqwqfkQ4tdoIvX8zx5_HH1a3uT3v28vt1u7lKb53lMi8pSnecABda6RF2WRa1qnVGV1wWUbaVQ5VbLskKoc1RoZQ1UqJbviuyTOk--nPpOfvx9oBBN74KlrsOBxkMwlQalK2bESn1SWj-G4Kk1_OMe_WwkmIWq2Zt_VM1C1UBhmCob709GTxPZNxcR4bTozdEorEpOM8dfp0LHISWniUNp0EZpLuxiz_0-v46MwWLXMlfrwlvfTMllUyXrvp10jJOOjrwJ1tFgqXG8o2ia0f1v9D8G86m5</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Tan, Zhongfu</creator><creator>Zhang, Jinliang</creator><creator>Wang, Jianhui</creator><creator>Xu, Jun</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20101101</creationdate><title>Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models</title><author>Tan, Zhongfu ; Zhang, Jinliang ; Wang, Jianhui ; Xu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-58ce944005a967a677593962e849507f83a34c6178a094a3ac190e53f4a33ecb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Approximation</topic><topic>ARIMA</topic><topic>Composing</topic><topic>Economic data</topic><topic>Electric energy</topic><topic>Electricity</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Exact sciences and technology</topic><topic>Forecasting</topic><topic>GARCH</topic><topic>General, economic and professional studies</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methodology. Modelling</topic><topic>Price forecasting</topic><topic>Price forecasting Wavelet transform ARIMA GARCH</topic><topic>Time series</topic><topic>Wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Zhongfu</creatorcontrib><creatorcontrib>Zhang, Jinliang</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Zhongfu</au><au>Zhang, Jinliang</au><au>Wang, Jianhui</au><au>Xu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models</atitle><jtitle>Applied energy</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>87</volume><issue>11</issue><spage>3606</spage><epage>3610</epage><pages>3606-3610</pages><issn>0306-2619</issn><eissn>1872-9118</eissn><coden>APENDX</coden><abstract>This paper proposes a novel price forecasting method based on wavelet transform combined with ARIMA and GARCH models. By wavelet transform, the historical price series is decomposed and reconstructed into one approximation series and some detail series. Then each subseries can be separately predicted by a suitable time series model. The final forecast is obtained by composing the forecasted results of each subseries. This proposed method is examined on Spanish and PJM electricity markets and compared with some other forecasting methods.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2010.05.012</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2010-11, Vol.87 (11), p.3606-3610
issn 0306-2619
1872-9118
language eng
recordid cdi_proquest_miscellaneous_860368010
source RePEc; Elsevier ScienceDirect Journals
subjects Applied sciences
Approximation
ARIMA
Composing
Economic data
Electric energy
Electricity
Energy
Energy economics
Exact sciences and technology
Forecasting
GARCH
General, economic and professional studies
Mathematical analysis
Mathematical models
Methodology. Modelling
Price forecasting
Price forecasting Wavelet transform ARIMA GARCH
Time series
Wavelet transform
Wavelet transforms
title Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Day-ahead%20electricity%20price%20forecasting%20using%20wavelet%20transform%20combined%20with%20ARIMA%20and%20GARCH%20models&rft.jtitle=Applied%20energy&rft.au=Tan,%20Zhongfu&rft.date=2010-11-01&rft.volume=87&rft.issue=11&rft.spage=3606&rft.epage=3610&rft.pages=3606-3610&rft.issn=0306-2619&rft.eissn=1872-9118&rft.coden=APENDX&rft_id=info:doi/10.1016/j.apenergy.2010.05.012&rft_dat=%3Cproquest_cross%3E860368010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=860368010&rft_id=info:pmid/&rft_els_id=S0306261910001807&rfr_iscdi=true