Neuron–glia interactions underlie ALS-like axonal cytoskeletal pathology
Abstract Amyotrophic lateral sclerosis (ALS) is a devastating disorder involving loss of movement due to degeneration of motor neurons. Studies suggest that in ALS axonal dysfunction precedes the death of motor neurons. Pathologically, ALS is characterized by neurofilamentous swellings (spheroids) w...
Gespeichert in:
Veröffentlicht in: | Neurobiology of aging 2011-03, Vol.32 (3), p.459-469 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 469 |
---|---|
container_issue | 3 |
container_start_page | 459 |
container_title | Neurobiology of aging |
container_volume | 32 |
creator | King, A.E Dickson, T.C Blizzard, C.A Woodhouse, A Foster, S.S Chung, R.S Vickers, J.C |
description | Abstract Amyotrophic lateral sclerosis (ALS) is a devastating disorder involving loss of movement due to degeneration of motor neurons. Studies suggest that in ALS axonal dysfunction precedes the death of motor neurons. Pathologically, ALS is characterized by neurofilamentous swellings (spheroids) within the axons of motor neurons. However, the causes of this axonopathy and possible resulting axonal dysfunction are not known. Using a novel model of cultured mouse motor neurons, we have determined that these neurons are susceptible to proximal axonopathy, which is related to the glial environment. This axonopathy showed remarkable similarity, both morphologically and neurochemically, to spheroids that develop over months in SOD1G93A transgenic mice. Focal ubiquitination, as well as perturbations of neurofilaments and microtubules, occurred in the axonal spheroid-like swellings in vitro , and visualization of mitochondrial dynamics demonstrated that axonopathy resulted in impaired axonal transport. These data provide strong evidence for the involvement of non-neuronal cells in axonal dysfunction in ALS. This cell culture model may be of benefit for the development of therapeutic interventions directed at axonal preservation. |
doi_str_mv | 10.1016/j.neurobiolaging.2009.04.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_859059734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0197458009001195</els_id><sourcerecordid>859059734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-8a0ce4d6a1da12bdc1f4a793764a4da596789e94be27d9f3b45021efd7da201d3</originalsourceid><addsrcrecordid>eNqNks-O0zAQhy0EYsvCK6AcQJwSxokTxxJCWq1Y_qiCw8LZcuxJcevaxU4QvfEOvCFPgqNWIDhxGln65jejb0zIEwoVBdo931Ye5xgGG5zaWL-pagBRAasA2B2yom3bl5QJfpesgApesraHC_IgpS0AcMa7--SCClZz6GBF3r1fwvzP7z82zqrC-gmj0pMNPhWzNxidxeJqfVs6u8NCfQteuUIfp5B26HDKj4OaPgcXNseH5N6oXMJH53pJPt28-nj9plx_eP32-mpd6rbpprJXoJGZTlGjaD0YTUemuGh4xxQzqhUd7wUKNmDNjRibgbVQUxwNN6oGappL8uyUe4jhy4xpknubNDqnPIY5yb4V0AresEy-OJE6hpQijvIQ7V7Fo6QgF5lyK_-WKReZEpjMMnP74_Ogedij-dN8tpeBp2dAJa3cGJXXNv3magYd7ZjI3M2Jw6zlq8Uok7boNRobUU_SBPu_G738J0g7622evcMjpm2YY75PklSmWoK8XT7Acn8QAJSKtvkFg3Sybg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>859059734</pqid></control><display><type>article</type><title>Neuron–glia interactions underlie ALS-like axonal cytoskeletal pathology</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>King, A.E ; Dickson, T.C ; Blizzard, C.A ; Woodhouse, A ; Foster, S.S ; Chung, R.S ; Vickers, J.C</creator><creatorcontrib>King, A.E ; Dickson, T.C ; Blizzard, C.A ; Woodhouse, A ; Foster, S.S ; Chung, R.S ; Vickers, J.C</creatorcontrib><description>Abstract Amyotrophic lateral sclerosis (ALS) is a devastating disorder involving loss of movement due to degeneration of motor neurons. Studies suggest that in ALS axonal dysfunction precedes the death of motor neurons. Pathologically, ALS is characterized by neurofilamentous swellings (spheroids) within the axons of motor neurons. However, the causes of this axonopathy and possible resulting axonal dysfunction are not known. Using a novel model of cultured mouse motor neurons, we have determined that these neurons are susceptible to proximal axonopathy, which is related to the glial environment. This axonopathy showed remarkable similarity, both morphologically and neurochemically, to spheroids that develop over months in SOD1G93A transgenic mice. Focal ubiquitination, as well as perturbations of neurofilaments and microtubules, occurred in the axonal spheroid-like swellings in vitro , and visualization of mitochondrial dynamics demonstrated that axonopathy resulted in impaired axonal transport. These data provide strong evidence for the involvement of non-neuronal cells in axonal dysfunction in ALS. This cell culture model may be of benefit for the development of therapeutic interventions directed at axonal preservation.</description><identifier>ISSN: 0197-4580</identifier><identifier>EISSN: 1558-1497</identifier><identifier>DOI: 10.1016/j.neurobiolaging.2009.04.004</identifier><identifier>PMID: 19427060</identifier><identifier>CODEN: NEAGDO</identifier><language>eng</language><publisher>London: Elsevier Inc</publisher><subject>ALS ; Amyotrophic Lateral Sclerosis - genetics ; Amyotrophic Lateral Sclerosis - pathology ; Animals ; Animals, Newborn ; Axon ; Axons - metabolism ; Bacterial Proteins - genetics ; Biological and medical sciences ; Cell Death - genetics ; Cells, Cultured ; Cytochromes c - metabolism ; Cytoskeleton - metabolism ; Cytoskeleton - pathology ; Development. Senescence. Regeneration. Transplantation ; Disease Models, Animal ; Edema - pathology ; Fundamental and applied biological sciences. Psychology ; Glia ; Glial Fibrillary Acidic Protein - metabolism ; Humans ; Internal Medicine ; Luminescent Proteins - genetics ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Motor neuron ; Motor Neurons - cytology ; Motor Neurons - physiology ; Neurofilament ; Neurofilament Proteins - metabolism ; Neuroglia - physiology ; Neurology ; Spinal Cord - cytology ; Superoxide Dismutase - genetics ; Synaptophysin - metabolism ; Time Factors ; Transfection - methods ; Vertebrates: nervous system and sense organs</subject><ispartof>Neurobiology of aging, 2011-03, Vol.32 (3), p.459-469</ispartof><rights>2009</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2009. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-8a0ce4d6a1da12bdc1f4a793764a4da596789e94be27d9f3b45021efd7da201d3</citedby><cites>FETCH-LOGICAL-c536t-8a0ce4d6a1da12bdc1f4a793764a4da596789e94be27d9f3b45021efd7da201d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neurobiolaging.2009.04.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24061649$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19427060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>King, A.E</creatorcontrib><creatorcontrib>Dickson, T.C</creatorcontrib><creatorcontrib>Blizzard, C.A</creatorcontrib><creatorcontrib>Woodhouse, A</creatorcontrib><creatorcontrib>Foster, S.S</creatorcontrib><creatorcontrib>Chung, R.S</creatorcontrib><creatorcontrib>Vickers, J.C</creatorcontrib><title>Neuron–glia interactions underlie ALS-like axonal cytoskeletal pathology</title><title>Neurobiology of aging</title><addtitle>Neurobiol Aging</addtitle><description>Abstract Amyotrophic lateral sclerosis (ALS) is a devastating disorder involving loss of movement due to degeneration of motor neurons. Studies suggest that in ALS axonal dysfunction precedes the death of motor neurons. Pathologically, ALS is characterized by neurofilamentous swellings (spheroids) within the axons of motor neurons. However, the causes of this axonopathy and possible resulting axonal dysfunction are not known. Using a novel model of cultured mouse motor neurons, we have determined that these neurons are susceptible to proximal axonopathy, which is related to the glial environment. This axonopathy showed remarkable similarity, both morphologically and neurochemically, to spheroids that develop over months in SOD1G93A transgenic mice. Focal ubiquitination, as well as perturbations of neurofilaments and microtubules, occurred in the axonal spheroid-like swellings in vitro , and visualization of mitochondrial dynamics demonstrated that axonopathy resulted in impaired axonal transport. These data provide strong evidence for the involvement of non-neuronal cells in axonal dysfunction in ALS. This cell culture model may be of benefit for the development of therapeutic interventions directed at axonal preservation.</description><subject>ALS</subject><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Amyotrophic Lateral Sclerosis - pathology</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Axon</subject><subject>Axons - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Biological and medical sciences</subject><subject>Cell Death - genetics</subject><subject>Cells, Cultured</subject><subject>Cytochromes c - metabolism</subject><subject>Cytoskeleton - metabolism</subject><subject>Cytoskeleton - pathology</subject><subject>Development. Senescence. Regeneration. Transplantation</subject><subject>Disease Models, Animal</subject><subject>Edema - pathology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glia</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Luminescent Proteins - genetics</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Motor neuron</subject><subject>Motor Neurons - cytology</subject><subject>Motor Neurons - physiology</subject><subject>Neurofilament</subject><subject>Neurofilament Proteins - metabolism</subject><subject>Neuroglia - physiology</subject><subject>Neurology</subject><subject>Spinal Cord - cytology</subject><subject>Superoxide Dismutase - genetics</subject><subject>Synaptophysin - metabolism</subject><subject>Time Factors</subject><subject>Transfection - methods</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0197-4580</issn><issn>1558-1497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks-O0zAQhy0EYsvCK6AcQJwSxokTxxJCWq1Y_qiCw8LZcuxJcevaxU4QvfEOvCFPgqNWIDhxGln65jejb0zIEwoVBdo931Ye5xgGG5zaWL-pagBRAasA2B2yom3bl5QJfpesgApesraHC_IgpS0AcMa7--SCClZz6GBF3r1fwvzP7z82zqrC-gmj0pMNPhWzNxidxeJqfVs6u8NCfQteuUIfp5B26HDKj4OaPgcXNseH5N6oXMJH53pJPt28-nj9plx_eP32-mpd6rbpprJXoJGZTlGjaD0YTUemuGh4xxQzqhUd7wUKNmDNjRibgbVQUxwNN6oGappL8uyUe4jhy4xpknubNDqnPIY5yb4V0AresEy-OJE6hpQijvIQ7V7Fo6QgF5lyK_-WKReZEpjMMnP74_Ogedij-dN8tpeBp2dAJa3cGJXXNv3magYd7ZjI3M2Jw6zlq8Uok7boNRobUU_SBPu_G738J0g7622evcMjpm2YY75PklSmWoK8XT7Acn8QAJSKtvkFg3Sybg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>King, A.E</creator><creator>Dickson, T.C</creator><creator>Blizzard, C.A</creator><creator>Woodhouse, A</creator><creator>Foster, S.S</creator><creator>Chung, R.S</creator><creator>Vickers, J.C</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110301</creationdate><title>Neuron–glia interactions underlie ALS-like axonal cytoskeletal pathology</title><author>King, A.E ; Dickson, T.C ; Blizzard, C.A ; Woodhouse, A ; Foster, S.S ; Chung, R.S ; Vickers, J.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-8a0ce4d6a1da12bdc1f4a793764a4da596789e94be27d9f3b45021efd7da201d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ALS</topic><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Amyotrophic Lateral Sclerosis - pathology</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Axon</topic><topic>Axons - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Biological and medical sciences</topic><topic>Cell Death - genetics</topic><topic>Cells, Cultured</topic><topic>Cytochromes c - metabolism</topic><topic>Cytoskeleton - metabolism</topic><topic>Cytoskeleton - pathology</topic><topic>Development. Senescence. Regeneration. Transplantation</topic><topic>Disease Models, Animal</topic><topic>Edema - pathology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glia</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Luminescent Proteins - genetics</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Motor neuron</topic><topic>Motor Neurons - cytology</topic><topic>Motor Neurons - physiology</topic><topic>Neurofilament</topic><topic>Neurofilament Proteins - metabolism</topic><topic>Neuroglia - physiology</topic><topic>Neurology</topic><topic>Spinal Cord - cytology</topic><topic>Superoxide Dismutase - genetics</topic><topic>Synaptophysin - metabolism</topic><topic>Time Factors</topic><topic>Transfection - methods</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King, A.E</creatorcontrib><creatorcontrib>Dickson, T.C</creatorcontrib><creatorcontrib>Blizzard, C.A</creatorcontrib><creatorcontrib>Woodhouse, A</creatorcontrib><creatorcontrib>Foster, S.S</creatorcontrib><creatorcontrib>Chung, R.S</creatorcontrib><creatorcontrib>Vickers, J.C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neurobiology of aging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, A.E</au><au>Dickson, T.C</au><au>Blizzard, C.A</au><au>Woodhouse, A</au><au>Foster, S.S</au><au>Chung, R.S</au><au>Vickers, J.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuron–glia interactions underlie ALS-like axonal cytoskeletal pathology</atitle><jtitle>Neurobiology of aging</jtitle><addtitle>Neurobiol Aging</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>32</volume><issue>3</issue><spage>459</spage><epage>469</epage><pages>459-469</pages><issn>0197-4580</issn><eissn>1558-1497</eissn><coden>NEAGDO</coden><abstract>Abstract Amyotrophic lateral sclerosis (ALS) is a devastating disorder involving loss of movement due to degeneration of motor neurons. Studies suggest that in ALS axonal dysfunction precedes the death of motor neurons. Pathologically, ALS is characterized by neurofilamentous swellings (spheroids) within the axons of motor neurons. However, the causes of this axonopathy and possible resulting axonal dysfunction are not known. Using a novel model of cultured mouse motor neurons, we have determined that these neurons are susceptible to proximal axonopathy, which is related to the glial environment. This axonopathy showed remarkable similarity, both morphologically and neurochemically, to spheroids that develop over months in SOD1G93A transgenic mice. Focal ubiquitination, as well as perturbations of neurofilaments and microtubules, occurred in the axonal spheroid-like swellings in vitro , and visualization of mitochondrial dynamics demonstrated that axonopathy resulted in impaired axonal transport. These data provide strong evidence for the involvement of non-neuronal cells in axonal dysfunction in ALS. This cell culture model may be of benefit for the development of therapeutic interventions directed at axonal preservation.</abstract><cop>London</cop><pub>Elsevier Inc</pub><pmid>19427060</pmid><doi>10.1016/j.neurobiolaging.2009.04.004</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0197-4580 |
ispartof | Neurobiology of aging, 2011-03, Vol.32 (3), p.459-469 |
issn | 0197-4580 1558-1497 |
language | eng |
recordid | cdi_proquest_miscellaneous_859059734 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | ALS Amyotrophic Lateral Sclerosis - genetics Amyotrophic Lateral Sclerosis - pathology Animals Animals, Newborn Axon Axons - metabolism Bacterial Proteins - genetics Biological and medical sciences Cell Death - genetics Cells, Cultured Cytochromes c - metabolism Cytoskeleton - metabolism Cytoskeleton - pathology Development. Senescence. Regeneration. Transplantation Disease Models, Animal Edema - pathology Fundamental and applied biological sciences. Psychology Glia Glial Fibrillary Acidic Protein - metabolism Humans Internal Medicine Luminescent Proteins - genetics Mice Mice, Inbred C57BL Mice, Transgenic Motor neuron Motor Neurons - cytology Motor Neurons - physiology Neurofilament Neurofilament Proteins - metabolism Neuroglia - physiology Neurology Spinal Cord - cytology Superoxide Dismutase - genetics Synaptophysin - metabolism Time Factors Transfection - methods Vertebrates: nervous system and sense organs |
title | Neuron–glia interactions underlie ALS-like axonal cytoskeletal pathology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A31%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuron%E2%80%93glia%20interactions%20underlie%20ALS-like%20axonal%20cytoskeletal%20pathology&rft.jtitle=Neurobiology%20of%20aging&rft.au=King,%20A.E&rft.date=2011-03-01&rft.volume=32&rft.issue=3&rft.spage=459&rft.epage=469&rft.pages=459-469&rft.issn=0197-4580&rft.eissn=1558-1497&rft.coden=NEAGDO&rft_id=info:doi/10.1016/j.neurobiolaging.2009.04.004&rft_dat=%3Cproquest_cross%3E859059734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=859059734&rft_id=info:pmid/19427060&rft_els_id=S0197458009001195&rfr_iscdi=true |