Hydrophobic‐Domain‐Dependent Protein–Protein Interactions Mediate the Localization of GPAT Enzymes to ER Subdomains

The endoplasmic reticulum (ER) is a dynamic organelle that consists of numerous regions or ‘subdomains’ that have discrete morphological features and functional properties. Although it is generally accepted that these subdomains differ in their protein and perhaps lipid compositions, a clear underst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Traffic (Copenhagen, Denmark) Denmark), 2011-04, Vol.12 (4), p.452-472
Hauptverfasser: Gidda, Satinder K., Shockey, Jay M., Falcone, Mina, Kim, Peter K., Rothstein, Steven J., Andrews, David W., Dyer, John M., Mullen, Robert T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 472
container_issue 4
container_start_page 452
container_title Traffic (Copenhagen, Denmark)
container_volume 12
creator Gidda, Satinder K.
Shockey, Jay M.
Falcone, Mina
Kim, Peter K.
Rothstein, Steven J.
Andrews, David W.
Dyer, John M.
Mullen, Robert T.
description The endoplasmic reticulum (ER) is a dynamic organelle that consists of numerous regions or ‘subdomains’ that have discrete morphological features and functional properties. Although it is generally accepted that these subdomains differ in their protein and perhaps lipid compositions, a clear understanding of how they are assembled and maintained has not been well established. We previously demonstrated that two diacylglycerol acyltransferase enzymes (DGAT1 and DGAT2) from tung tree (Vernicia fordii) were located in different subdomains of ER, but the mechanisms responsible for protein targeting to these subdomains were not elucidated. Here we extend these studies by describing two glycerol‐3‐phosphate acyltransferase‐like (GPAT) enzymes from tung tree, GPAT8 and GPAT9, that both colocalize with DGAT2 in the same ER subdomains. Measurement of protein–protein interactions using the split‐ubiquitin assay revealed that GPAT8 interacts with itself, GPAT9 and DGAT2, but not with DGAT1. Furthermore, mutational analysis of GPAT8 revealed that the protein's first predicted hydrophobic region, which contains an amphipathic helix‐like motif, is required for interaction with DGAT2 and for DGAT2‐dependent colocalization in ER subdomains. Taken together, these results suggest that the regulation and organization of ER subdomains is mediated at least in part by higher‐ordered, hydrophobic‐domain‐dependent homo‐ and hetero‐oligomeric protein–protein interactions.
doi_str_mv 10.1111/j.1600-0854.2011.01160.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_858780895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>858780895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4840-391b4c7b5452c4d9febdf1430d6464a3930b1f68c6a27e8efb7f8e3bb19c10a3</originalsourceid><addsrcrecordid>eNqNkM1OwzAMxyME4mPwCig3Ti1Om7bpgcME40MaAsHuUZK6olPbjKYTKyceAYk35Elot8EZS5b_sv-2pR8hlIHP-jif-ywG8EBE3A-AMb_PGPzVDjn8G-z2OkyFlwYsPSBHzs0BIIg43ycHAQsYTwAOSXfbZY1dvFhdmO-PzytbqaIeBC6wzrBu6WNjWxx6X1tF7-oWG2XawtaO3mNWqBZp-4J0ao0qi3c1TKjN6c3jeEYn9XtXoaOtpZMn-rzU2fqHOyZ7uSodnmzriMyuJ7PLW2_6cHN3OZ56hgsOXpgyzU2iIx4FhmdpjjrLGQ8hi3nMVZiGoFkeCxOrIEGBuU5ygaHWLDUMVDgiZ5uzi8a-LtG1siqcwbJUNdqlkyISiQCRRr1TbJymsc41mMtFU1Sq6SQDOWCXcznQlQNdOWCXa-xy1a-ebp8sdYXZ3-Iv595wsTG8FSV2_z4sZ0_jQYU_OiWVKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858780895</pqid></control><display><type>article</type><title>Hydrophobic‐Domain‐Dependent Protein–Protein Interactions Mediate the Localization of GPAT Enzymes to ER Subdomains</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><creator>Gidda, Satinder K. ; Shockey, Jay M. ; Falcone, Mina ; Kim, Peter K. ; Rothstein, Steven J. ; Andrews, David W. ; Dyer, John M. ; Mullen, Robert T.</creator><creatorcontrib>Gidda, Satinder K. ; Shockey, Jay M. ; Falcone, Mina ; Kim, Peter K. ; Rothstein, Steven J. ; Andrews, David W. ; Dyer, John M. ; Mullen, Robert T.</creatorcontrib><description>The endoplasmic reticulum (ER) is a dynamic organelle that consists of numerous regions or ‘subdomains’ that have discrete morphological features and functional properties. Although it is generally accepted that these subdomains differ in their protein and perhaps lipid compositions, a clear understanding of how they are assembled and maintained has not been well established. We previously demonstrated that two diacylglycerol acyltransferase enzymes (DGAT1 and DGAT2) from tung tree (Vernicia fordii) were located in different subdomains of ER, but the mechanisms responsible for protein targeting to these subdomains were not elucidated. Here we extend these studies by describing two glycerol‐3‐phosphate acyltransferase‐like (GPAT) enzymes from tung tree, GPAT8 and GPAT9, that both colocalize with DGAT2 in the same ER subdomains. Measurement of protein–protein interactions using the split‐ubiquitin assay revealed that GPAT8 interacts with itself, GPAT9 and DGAT2, but not with DGAT1. Furthermore, mutational analysis of GPAT8 revealed that the protein's first predicted hydrophobic region, which contains an amphipathic helix‐like motif, is required for interaction with DGAT2 and for DGAT2‐dependent colocalization in ER subdomains. Taken together, these results suggest that the regulation and organization of ER subdomains is mediated at least in part by higher‐ordered, hydrophobic‐domain‐dependent homo‐ and hetero‐oligomeric protein–protein interactions.</description><identifier>ISSN: 1398-9219</identifier><identifier>EISSN: 1600-0854</identifier><identifier>DOI: 10.1111/j.1600-0854.2011.01160.x</identifier><identifier>PMID: 21214700</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Aleurites - enzymology ; Aleurites - genetics ; Aleurites - metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Cells, Cultured ; diacylglycerol acyltransferase ; Diacylglycerol O-Acyltransferase - chemistry ; Diacylglycerol O-Acyltransferase - metabolism ; endoplasmic reticulum ; Endoplasmic Reticulum - enzymology ; Glycerol-3-Phosphate O-Acyltransferase - chemistry ; Glycerol-3-Phosphate O-Acyltransferase - genetics ; Glycerol-3-Phosphate O-Acyltransferase - metabolism ; glycerol‐3‐phosphate acyltransferase ; Membrane Proteins - chemistry ; Membrane Proteins - metabolism ; Molecular Sequence Data ; Protein Interaction Domains and Motifs ; Protein Structure, Tertiary ; protein targeting ; protein topology ; Protein Transport ; protein–protein interactions ; subdomain ; Yeasts</subject><ispartof>Traffic (Copenhagen, Denmark), 2011-04, Vol.12 (4), p.452-472</ispartof><rights>2011 John Wiley &amp; Sons A/S</rights><rights>2011 John Wiley &amp; Sons A/S.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4840-391b4c7b5452c4d9febdf1430d6464a3930b1f68c6a27e8efb7f8e3bb19c10a3</citedby><cites>FETCH-LOGICAL-c4840-391b4c7b5452c4d9febdf1430d6464a3930b1f68c6a27e8efb7f8e3bb19c10a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1600-0854.2011.01160.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1600-0854.2011.01160.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21214700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gidda, Satinder K.</creatorcontrib><creatorcontrib>Shockey, Jay M.</creatorcontrib><creatorcontrib>Falcone, Mina</creatorcontrib><creatorcontrib>Kim, Peter K.</creatorcontrib><creatorcontrib>Rothstein, Steven J.</creatorcontrib><creatorcontrib>Andrews, David W.</creatorcontrib><creatorcontrib>Dyer, John M.</creatorcontrib><creatorcontrib>Mullen, Robert T.</creatorcontrib><title>Hydrophobic‐Domain‐Dependent Protein–Protein Interactions Mediate the Localization of GPAT Enzymes to ER Subdomains</title><title>Traffic (Copenhagen, Denmark)</title><addtitle>Traffic</addtitle><description>The endoplasmic reticulum (ER) is a dynamic organelle that consists of numerous regions or ‘subdomains’ that have discrete morphological features and functional properties. Although it is generally accepted that these subdomains differ in their protein and perhaps lipid compositions, a clear understanding of how they are assembled and maintained has not been well established. We previously demonstrated that two diacylglycerol acyltransferase enzymes (DGAT1 and DGAT2) from tung tree (Vernicia fordii) were located in different subdomains of ER, but the mechanisms responsible for protein targeting to these subdomains were not elucidated. Here we extend these studies by describing two glycerol‐3‐phosphate acyltransferase‐like (GPAT) enzymes from tung tree, GPAT8 and GPAT9, that both colocalize with DGAT2 in the same ER subdomains. Measurement of protein–protein interactions using the split‐ubiquitin assay revealed that GPAT8 interacts with itself, GPAT9 and DGAT2, but not with DGAT1. Furthermore, mutational analysis of GPAT8 revealed that the protein's first predicted hydrophobic region, which contains an amphipathic helix‐like motif, is required for interaction with DGAT2 and for DGAT2‐dependent colocalization in ER subdomains. Taken together, these results suggest that the regulation and organization of ER subdomains is mediated at least in part by higher‐ordered, hydrophobic‐domain‐dependent homo‐ and hetero‐oligomeric protein–protein interactions.</description><subject>Aleurites - enzymology</subject><subject>Aleurites - genetics</subject><subject>Aleurites - metabolism</subject><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Cells, Cultured</subject><subject>diacylglycerol acyltransferase</subject><subject>Diacylglycerol O-Acyltransferase - chemistry</subject><subject>Diacylglycerol O-Acyltransferase - metabolism</subject><subject>endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - enzymology</subject><subject>Glycerol-3-Phosphate O-Acyltransferase - chemistry</subject><subject>Glycerol-3-Phosphate O-Acyltransferase - genetics</subject><subject>Glycerol-3-Phosphate O-Acyltransferase - metabolism</subject><subject>glycerol‐3‐phosphate acyltransferase</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Structure, Tertiary</subject><subject>protein targeting</subject><subject>protein topology</subject><subject>Protein Transport</subject><subject>protein–protein interactions</subject><subject>subdomain</subject><subject>Yeasts</subject><issn>1398-9219</issn><issn>1600-0854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1OwzAMxyME4mPwCig3Ti1Om7bpgcME40MaAsHuUZK6olPbjKYTKyceAYk35Elot8EZS5b_sv-2pR8hlIHP-jif-ywG8EBE3A-AMb_PGPzVDjn8G-z2OkyFlwYsPSBHzs0BIIg43ycHAQsYTwAOSXfbZY1dvFhdmO-PzytbqaIeBC6wzrBu6WNjWxx6X1tF7-oWG2XawtaO3mNWqBZp-4J0ao0qi3c1TKjN6c3jeEYn9XtXoaOtpZMn-rzU2fqHOyZ7uSodnmzriMyuJ7PLW2_6cHN3OZ56hgsOXpgyzU2iIx4FhmdpjjrLGQ8hi3nMVZiGoFkeCxOrIEGBuU5ygaHWLDUMVDgiZ5uzi8a-LtG1siqcwbJUNdqlkyISiQCRRr1TbJymsc41mMtFU1Sq6SQDOWCXcznQlQNdOWCXa-xy1a-ebp8sdYXZ3-Iv595wsTG8FSV2_z4sZ0_jQYU_OiWVKw</recordid><startdate>201104</startdate><enddate>201104</enddate><creator>Gidda, Satinder K.</creator><creator>Shockey, Jay M.</creator><creator>Falcone, Mina</creator><creator>Kim, Peter K.</creator><creator>Rothstein, Steven J.</creator><creator>Andrews, David W.</creator><creator>Dyer, John M.</creator><creator>Mullen, Robert T.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201104</creationdate><title>Hydrophobic‐Domain‐Dependent Protein–Protein Interactions Mediate the Localization of GPAT Enzymes to ER Subdomains</title><author>Gidda, Satinder K. ; Shockey, Jay M. ; Falcone, Mina ; Kim, Peter K. ; Rothstein, Steven J. ; Andrews, David W. ; Dyer, John M. ; Mullen, Robert T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4840-391b4c7b5452c4d9febdf1430d6464a3930b1f68c6a27e8efb7f8e3bb19c10a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aleurites - enzymology</topic><topic>Aleurites - genetics</topic><topic>Aleurites - metabolism</topic><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Cells, Cultured</topic><topic>diacylglycerol acyltransferase</topic><topic>Diacylglycerol O-Acyltransferase - chemistry</topic><topic>Diacylglycerol O-Acyltransferase - metabolism</topic><topic>endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - enzymology</topic><topic>Glycerol-3-Phosphate O-Acyltransferase - chemistry</topic><topic>Glycerol-3-Phosphate O-Acyltransferase - genetics</topic><topic>Glycerol-3-Phosphate O-Acyltransferase - metabolism</topic><topic>glycerol‐3‐phosphate acyltransferase</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Structure, Tertiary</topic><topic>protein targeting</topic><topic>protein topology</topic><topic>Protein Transport</topic><topic>protein–protein interactions</topic><topic>subdomain</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gidda, Satinder K.</creatorcontrib><creatorcontrib>Shockey, Jay M.</creatorcontrib><creatorcontrib>Falcone, Mina</creatorcontrib><creatorcontrib>Kim, Peter K.</creatorcontrib><creatorcontrib>Rothstein, Steven J.</creatorcontrib><creatorcontrib>Andrews, David W.</creatorcontrib><creatorcontrib>Dyer, John M.</creatorcontrib><creatorcontrib>Mullen, Robert T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Traffic (Copenhagen, Denmark)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gidda, Satinder K.</au><au>Shockey, Jay M.</au><au>Falcone, Mina</au><au>Kim, Peter K.</au><au>Rothstein, Steven J.</au><au>Andrews, David W.</au><au>Dyer, John M.</au><au>Mullen, Robert T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrophobic‐Domain‐Dependent Protein–Protein Interactions Mediate the Localization of GPAT Enzymes to ER Subdomains</atitle><jtitle>Traffic (Copenhagen, Denmark)</jtitle><addtitle>Traffic</addtitle><date>2011-04</date><risdate>2011</risdate><volume>12</volume><issue>4</issue><spage>452</spage><epage>472</epage><pages>452-472</pages><issn>1398-9219</issn><eissn>1600-0854</eissn><abstract>The endoplasmic reticulum (ER) is a dynamic organelle that consists of numerous regions or ‘subdomains’ that have discrete morphological features and functional properties. Although it is generally accepted that these subdomains differ in their protein and perhaps lipid compositions, a clear understanding of how they are assembled and maintained has not been well established. We previously demonstrated that two diacylglycerol acyltransferase enzymes (DGAT1 and DGAT2) from tung tree (Vernicia fordii) were located in different subdomains of ER, but the mechanisms responsible for protein targeting to these subdomains were not elucidated. Here we extend these studies by describing two glycerol‐3‐phosphate acyltransferase‐like (GPAT) enzymes from tung tree, GPAT8 and GPAT9, that both colocalize with DGAT2 in the same ER subdomains. Measurement of protein–protein interactions using the split‐ubiquitin assay revealed that GPAT8 interacts with itself, GPAT9 and DGAT2, but not with DGAT1. Furthermore, mutational analysis of GPAT8 revealed that the protein's first predicted hydrophobic region, which contains an amphipathic helix‐like motif, is required for interaction with DGAT2 and for DGAT2‐dependent colocalization in ER subdomains. Taken together, these results suggest that the regulation and organization of ER subdomains is mediated at least in part by higher‐ordered, hydrophobic‐domain‐dependent homo‐ and hetero‐oligomeric protein–protein interactions.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21214700</pmid><doi>10.1111/j.1600-0854.2011.01160.x</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1398-9219
ispartof Traffic (Copenhagen, Denmark), 2011-04, Vol.12 (4), p.452-472
issn 1398-9219
1600-0854
language eng
recordid cdi_proquest_miscellaneous_858780895
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals
subjects Aleurites - enzymology
Aleurites - genetics
Aleurites - metabolism
Amino Acid Motifs
Amino Acid Sequence
Cells, Cultured
diacylglycerol acyltransferase
Diacylglycerol O-Acyltransferase - chemistry
Diacylglycerol O-Acyltransferase - metabolism
endoplasmic reticulum
Endoplasmic Reticulum - enzymology
Glycerol-3-Phosphate O-Acyltransferase - chemistry
Glycerol-3-Phosphate O-Acyltransferase - genetics
Glycerol-3-Phosphate O-Acyltransferase - metabolism
glycerol‐3‐phosphate acyltransferase
Membrane Proteins - chemistry
Membrane Proteins - metabolism
Molecular Sequence Data
Protein Interaction Domains and Motifs
Protein Structure, Tertiary
protein targeting
protein topology
Protein Transport
protein–protein interactions
subdomain
Yeasts
title Hydrophobic‐Domain‐Dependent Protein–Protein Interactions Mediate the Localization of GPAT Enzymes to ER Subdomains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrophobic%E2%80%90Domain%E2%80%90Dependent%20Protein%E2%80%93Protein%20Interactions%20Mediate%20the%20Localization%20of%20GPAT%20Enzymes%20to%20ER%20Subdomains&rft.jtitle=Traffic%20(Copenhagen,%20Denmark)&rft.au=Gidda,%20Satinder%20K.&rft.date=2011-04&rft.volume=12&rft.issue=4&rft.spage=452&rft.epage=472&rft.pages=452-472&rft.issn=1398-9219&rft.eissn=1600-0854&rft_id=info:doi/10.1111/j.1600-0854.2011.01160.x&rft_dat=%3Cproquest_cross%3E858780895%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858780895&rft_id=info:pmid/21214700&rfr_iscdi=true