Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: Hydrodynamic versus stochastic behavior

We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2011-03, Vol.134 (11), p.114107-114107-13
Hauptverfasser: Ackerman, David M., Wang, Jing, Wendel, Joseph H., Liu, Da-Jiang, Pruski, Marek, Evans, James W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114107-13
container_issue 11
container_start_page 114107
container_title The Journal of chemical physics
container_volume 134
creator Ackerman, David M.
Wang, Jing
Wendel, Joseph H.
Liu, Da-Jiang
Pruski, Marek
Evans, James W.
description We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.
doi_str_mv 10.1063/1.3563638
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_858777426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>858777426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-866da8583c3c8a5c4c218c3d83489f0170e2745fd8e22ab7c08c3f133eb3e0433</originalsourceid><addsrcrecordid>eNp1kctKAzEUQIMotlYX_oBkJy6m5jFNUheCFF9QcKPrIZO5YyPTpCYzhVn476a21pWrXMjhhJyL0DklY0oEv6ZjPhFccHWAhpSoaSbFlByiISGMZlNBxACdxPhBCKGS5cdowGjOlCByiL5mutVN31qDjXdrCNF6hwNo06Yh4iVUVrdQ4bLH0br3BrLaNoArW9fdD2sdbqwDHbDTzq98gHiDn_oq-Kp3epnEG2sXcWy9Wei4eaqEhV5bH07RUa2bCGe7c4TeHu5fZ0_Z_OXxeXY3zwyXeZspISqtJoobbpSemNwwqgyvFM_VtE6fIsBkPqkrBYzpUhqSbmvKOZQcSM75CF1uvavgPzuIbbG00UDTaAe-i0VySylzJhJ5tSVN8DEGqItVsEsd-oKSYhO7oMUudmIvdtauTJ325G_dBNxugWhsqzdB_7ft91D87YF_A6TQkZ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>858777426</pqid></control><display><type>article</type><title>Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: Hydrodynamic versus stochastic behavior</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Ackerman, David M. ; Wang, Jing ; Wendel, Joseph H. ; Liu, Da-Jiang ; Pruski, Marek ; Evans, James W.</creator><creatorcontrib>Ackerman, David M. ; Wang, Jing ; Wendel, Joseph H. ; Liu, Da-Jiang ; Pruski, Marek ; Evans, James W.</creatorcontrib><description>We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3563638</identifier><identifier>PMID: 21428607</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><ispartof>The Journal of chemical physics, 2011-03, Vol.134 (11), p.114107-114107-13</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-866da8583c3c8a5c4c218c3d83489f0170e2745fd8e22ab7c08c3f133eb3e0433</citedby><cites>FETCH-LOGICAL-c374t-866da8583c3c8a5c4c218c3d83489f0170e2745fd8e22ab7c08c3f133eb3e0433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,1559,4512,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21428607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ackerman, David M.</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wendel, Joseph H.</creatorcontrib><creatorcontrib>Liu, Da-Jiang</creatorcontrib><creatorcontrib>Pruski, Marek</creatorcontrib><creatorcontrib>Evans, James W.</creatorcontrib><title>Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: Hydrodynamic versus stochastic behavior</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kctKAzEUQIMotlYX_oBkJy6m5jFNUheCFF9QcKPrIZO5YyPTpCYzhVn476a21pWrXMjhhJyL0DklY0oEv6ZjPhFccHWAhpSoaSbFlByiISGMZlNBxACdxPhBCKGS5cdowGjOlCByiL5mutVN31qDjXdrCNF6hwNo06Yh4iVUVrdQ4bLH0br3BrLaNoArW9fdD2sdbqwDHbDTzq98gHiDn_oq-Kp3epnEG2sXcWy9Wei4eaqEhV5bH07RUa2bCGe7c4TeHu5fZ0_Z_OXxeXY3zwyXeZspISqtJoobbpSemNwwqgyvFM_VtE6fIsBkPqkrBYzpUhqSbmvKOZQcSM75CF1uvavgPzuIbbG00UDTaAe-i0VySylzJhJ5tSVN8DEGqItVsEsd-oKSYhO7oMUudmIvdtauTJ325G_dBNxugWhsqzdB_7ft91D87YF_A6TQkZ8</recordid><startdate>20110321</startdate><enddate>20110321</enddate><creator>Ackerman, David M.</creator><creator>Wang, Jing</creator><creator>Wendel, Joseph H.</creator><creator>Liu, Da-Jiang</creator><creator>Pruski, Marek</creator><creator>Evans, James W.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110321</creationdate><title>Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: Hydrodynamic versus stochastic behavior</title><author>Ackerman, David M. ; Wang, Jing ; Wendel, Joseph H. ; Liu, Da-Jiang ; Pruski, Marek ; Evans, James W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-866da8583c3c8a5c4c218c3d83489f0170e2745fd8e22ab7c08c3f133eb3e0433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ackerman, David M.</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wendel, Joseph H.</creatorcontrib><creatorcontrib>Liu, Da-Jiang</creatorcontrib><creatorcontrib>Pruski, Marek</creatorcontrib><creatorcontrib>Evans, James W.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ackerman, David M.</au><au>Wang, Jing</au><au>Wendel, Joseph H.</au><au>Liu, Da-Jiang</au><au>Pruski, Marek</au><au>Evans, James W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: Hydrodynamic versus stochastic behavior</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2011-03-21</date><risdate>2011</risdate><volume>134</volume><issue>11</issue><spage>114107</spage><epage>114107-13</epage><pages>114107-114107-13</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>21428607</pmid><doi>10.1063/1.3563638</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2011-03, Vol.134 (11), p.114107-114107-13
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_858777426
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
title Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: Hydrodynamic versus stochastic behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20conversion%20reactions%20mediated%20by%20single-file%20diffusion%20in%20linear%20nanopores:%20Hydrodynamic%20versus%20stochastic%20behavior&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Ackerman,%20David%20M.&rft.date=2011-03-21&rft.volume=134&rft.issue=11&rft.spage=114107&rft.epage=114107-13&rft.pages=114107-114107-13&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.3563638&rft_dat=%3Cproquest_cross%3E858777426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=858777426&rft_id=info:pmid/21428607&rfr_iscdi=true