The role of chemometrics in single and sequential extraction assays: A Review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques

Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2011-03, Vol.688 (2), p.122-139
Hauptverfasser: Giacomino, Agnese, Abollino, Ornella, Malandrino, Mery, Mentasti, Edoardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue 2
container_start_page 122
container_title Analytica chimica acta
container_volume 688
creator Giacomino, Agnese
Abollino, Ornella
Malandrino, Mery
Mentasti, Edoardo
description Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied.
doi_str_mv 10.1016/j.aca.2010.12.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_858421145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267010015977</els_id><sourcerecordid>858421145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-6b4f68a51cceec55ebb7efefdc3c96bb2913533fd5c40bda077c0cf48aed5b593</originalsourceid><addsrcrecordid>eNqNkc2O0zAUhSMEYjoDD8AGeYPYTIN_k5RZjSp-Ko0EQsPacpyb1pXjFF8H2tfjyXCnBXaIlXV9v3vusU9RvGC0ZJRVb7alsabk9FjzkvLmUTFjTS3mUnD5uJhRSsWcVzW9KC4Rt7nkjMqnxQVnQkhZ17Pi5_0GSBw9kLEndgPDOECKziJxgaAL69wxoSMI3yYIyRlPYJ-iscmNgRhEc8C35JZ8ge8OfpTks4mJrFYlWfoJE8Q8bPwBHV6TYfLJ7bKedwFMJBHWERCzTu65fZpidgI4-ik93MF-B9ENeWte2gG6dXiwMqZN1k1gN8FlU_iseNIbj_D8fF4VX9-_u19-nN99-rBa3t7NrVR1mlet7KvGKGYtgFUK2raGHvrOCruo2pYvmFBC9J2ykradoXVtqe1lY6BTrVqIq-L1SXcXx-PepAeHFrw3AcYJdaMayRmT6j9IwTlXdZVJdiJtHBEj9HqXn2ziQTOqjxnrrc4Z62PGmnGdM84zL8_qUztA92fid6gZeHUGDFrj-2iCdfiXE4tMKZa5mxMH-ddyfFGjdRAsdC6CTbob3T9s_AL8GMly</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853222576</pqid></control><display><type>article</type><title>The role of chemometrics in single and sequential extraction assays: A Review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques</title><source>Elsevier ScienceDirect Journals</source><creator>Giacomino, Agnese ; Abollino, Ornella ; Malandrino, Mery ; Mentasti, Edoardo</creator><creatorcontrib>Giacomino, Agnese ; Abollino, Ornella ; Malandrino, Mery ; Mentasti, Edoardo</creatorcontrib><description>Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2010.12.028</identifier><identifier>PMID: 21334477</identifier><identifier>CODEN: ACACAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical chemistry ; Chemistry ; Chemometrics ; Design engineering ; Exact sciences and technology ; Extraction ; Fractionation ; General, instrumentation ; Mathematical analysis ; Mathematical models ; Multivariate statistics ; Pattern recognition ; Regression ; Sediment ; Sequential extraction ; Single extraction ; Soil</subject><ispartof>Analytica chimica acta, 2011-03, Vol.688 (2), p.122-139</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-6b4f68a51cceec55ebb7efefdc3c96bb2913533fd5c40bda077c0cf48aed5b593</citedby><cites>FETCH-LOGICAL-c457t-6b4f68a51cceec55ebb7efefdc3c96bb2913533fd5c40bda077c0cf48aed5b593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003267010015977$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23947751$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21334477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giacomino, Agnese</creatorcontrib><creatorcontrib>Abollino, Ornella</creatorcontrib><creatorcontrib>Malandrino, Mery</creatorcontrib><creatorcontrib>Mentasti, Edoardo</creatorcontrib><title>The role of chemometrics in single and sequential extraction assays: A Review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chemometrics</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>Fractionation</subject><subject>General, instrumentation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multivariate statistics</subject><subject>Pattern recognition</subject><subject>Regression</subject><subject>Sediment</subject><subject>Sequential extraction</subject><subject>Single extraction</subject><subject>Soil</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkc2O0zAUhSMEYjoDD8AGeYPYTIN_k5RZjSp-Ko0EQsPacpyb1pXjFF8H2tfjyXCnBXaIlXV9v3vusU9RvGC0ZJRVb7alsabk9FjzkvLmUTFjTS3mUnD5uJhRSsWcVzW9KC4Rt7nkjMqnxQVnQkhZ17Pi5_0GSBw9kLEndgPDOECKziJxgaAL69wxoSMI3yYIyRlPYJ-iscmNgRhEc8C35JZ8ge8OfpTks4mJrFYlWfoJE8Q8bPwBHV6TYfLJ7bKedwFMJBHWERCzTu65fZpidgI4-ik93MF-B9ENeWte2gG6dXiwMqZN1k1gN8FlU_iseNIbj_D8fF4VX9-_u19-nN99-rBa3t7NrVR1mlet7KvGKGYtgFUK2raGHvrOCruo2pYvmFBC9J2ykradoXVtqe1lY6BTrVqIq-L1SXcXx-PepAeHFrw3AcYJdaMayRmT6j9IwTlXdZVJdiJtHBEj9HqXn2ziQTOqjxnrrc4Z62PGmnGdM84zL8_qUztA92fid6gZeHUGDFrj-2iCdfiXE4tMKZa5mxMH-ddyfFGjdRAsdC6CTbob3T9s_AL8GMly</recordid><startdate>20110304</startdate><enddate>20110304</enddate><creator>Giacomino, Agnese</creator><creator>Abollino, Ornella</creator><creator>Malandrino, Mery</creator><creator>Mentasti, Edoardo</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110304</creationdate><title>The role of chemometrics in single and sequential extraction assays: A Review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques</title><author>Giacomino, Agnese ; Abollino, Ornella ; Malandrino, Mery ; Mentasti, Edoardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-6b4f68a51cceec55ebb7efefdc3c96bb2913533fd5c40bda077c0cf48aed5b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chemometrics</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>Fractionation</topic><topic>General, instrumentation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multivariate statistics</topic><topic>Pattern recognition</topic><topic>Regression</topic><topic>Sediment</topic><topic>Sequential extraction</topic><topic>Single extraction</topic><topic>Soil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giacomino, Agnese</creatorcontrib><creatorcontrib>Abollino, Ornella</creatorcontrib><creatorcontrib>Malandrino, Mery</creatorcontrib><creatorcontrib>Mentasti, Edoardo</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giacomino, Agnese</au><au>Abollino, Ornella</au><au>Malandrino, Mery</au><au>Mentasti, Edoardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of chemometrics in single and sequential extraction assays: A Review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2011-03-04</date><risdate>2011</risdate><volume>688</volume><issue>2</issue><spage>122</spage><epage>139</epage><pages>122-139</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><coden>ACACAM</coden><abstract>Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>21334477</pmid><doi>10.1016/j.aca.2010.12.028</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2011-03, Vol.688 (2), p.122-139
issn 0003-2670
1873-4324
language eng
recordid cdi_proquest_miscellaneous_858421145
source Elsevier ScienceDirect Journals
subjects Analytical chemistry
Chemistry
Chemometrics
Design engineering
Exact sciences and technology
Extraction
Fractionation
General, instrumentation
Mathematical analysis
Mathematical models
Multivariate statistics
Pattern recognition
Regression
Sediment
Sequential extraction
Single extraction
Soil
title The role of chemometrics in single and sequential extraction assays: A Review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20chemometrics%20in%20single%20and%20sequential%20extraction%20assays:%20A%20Review.%20Part%20II.%20Cluster%20analysis,%20multiple%20linear%20regression,%20mixture%20resolution,%20experimental%20design%20and%20other%20techniques&rft.jtitle=Analytica%20chimica%20acta&rft.au=Giacomino,%20Agnese&rft.date=2011-03-04&rft.volume=688&rft.issue=2&rft.spage=122&rft.epage=139&rft.pages=122-139&rft.issn=0003-2670&rft.eissn=1873-4324&rft.coden=ACACAM&rft_id=info:doi/10.1016/j.aca.2010.12.028&rft_dat=%3Cproquest_cross%3E858421145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=853222576&rft_id=info:pmid/21334477&rft_els_id=S0003267010015977&rfr_iscdi=true