The role of chemometrics in single and sequential extraction assays: A Review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques
Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemom...
Gespeichert in:
Veröffentlicht in: | Analytica chimica acta 2011-03, Vol.688 (2), p.122-139 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 139 |
---|---|
container_issue | 2 |
container_start_page | 122 |
container_title | Analytica chimica acta |
container_volume | 688 |
creator | Giacomino, Agnese Abollino, Ornella Malandrino, Mery Mentasti, Edoardo |
description | Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied. |
doi_str_mv | 10.1016/j.aca.2010.12.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_858421145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267010015977</els_id><sourcerecordid>858421145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-6b4f68a51cceec55ebb7efefdc3c96bb2913533fd5c40bda077c0cf48aed5b593</originalsourceid><addsrcrecordid>eNqNkc2O0zAUhSMEYjoDD8AGeYPYTIN_k5RZjSp-Ko0EQsPacpyb1pXjFF8H2tfjyXCnBXaIlXV9v3vusU9RvGC0ZJRVb7alsabk9FjzkvLmUTFjTS3mUnD5uJhRSsWcVzW9KC4Rt7nkjMqnxQVnQkhZ17Pi5_0GSBw9kLEndgPDOECKziJxgaAL69wxoSMI3yYIyRlPYJ-iscmNgRhEc8C35JZ8ge8OfpTks4mJrFYlWfoJE8Q8bPwBHV6TYfLJ7bKedwFMJBHWERCzTu65fZpidgI4-ik93MF-B9ENeWte2gG6dXiwMqZN1k1gN8FlU_iseNIbj_D8fF4VX9-_u19-nN99-rBa3t7NrVR1mlet7KvGKGYtgFUK2raGHvrOCruo2pYvmFBC9J2ykradoXVtqe1lY6BTrVqIq-L1SXcXx-PepAeHFrw3AcYJdaMayRmT6j9IwTlXdZVJdiJtHBEj9HqXn2ziQTOqjxnrrc4Z62PGmnGdM84zL8_qUztA92fid6gZeHUGDFrj-2iCdfiXE4tMKZa5mxMH-ddyfFGjdRAsdC6CTbob3T9s_AL8GMly</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>853222576</pqid></control><display><type>article</type><title>The role of chemometrics in single and sequential extraction assays: A Review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques</title><source>Elsevier ScienceDirect Journals</source><creator>Giacomino, Agnese ; Abollino, Ornella ; Malandrino, Mery ; Mentasti, Edoardo</creator><creatorcontrib>Giacomino, Agnese ; Abollino, Ornella ; Malandrino, Mery ; Mentasti, Edoardo</creatorcontrib><description>Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2010.12.028</identifier><identifier>PMID: 21334477</identifier><identifier>CODEN: ACACAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical chemistry ; Chemistry ; Chemometrics ; Design engineering ; Exact sciences and technology ; Extraction ; Fractionation ; General, instrumentation ; Mathematical analysis ; Mathematical models ; Multivariate statistics ; Pattern recognition ; Regression ; Sediment ; Sequential extraction ; Single extraction ; Soil</subject><ispartof>Analytica chimica acta, 2011-03, Vol.688 (2), p.122-139</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-6b4f68a51cceec55ebb7efefdc3c96bb2913533fd5c40bda077c0cf48aed5b593</citedby><cites>FETCH-LOGICAL-c457t-6b4f68a51cceec55ebb7efefdc3c96bb2913533fd5c40bda077c0cf48aed5b593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0003267010015977$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23947751$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21334477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giacomino, Agnese</creatorcontrib><creatorcontrib>Abollino, Ornella</creatorcontrib><creatorcontrib>Malandrino, Mery</creatorcontrib><creatorcontrib>Mentasti, Edoardo</creatorcontrib><title>The role of chemometrics in single and sequential extraction assays: A Review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Chemometrics</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Extraction</subject><subject>Fractionation</subject><subject>General, instrumentation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multivariate statistics</subject><subject>Pattern recognition</subject><subject>Regression</subject><subject>Sediment</subject><subject>Sequential extraction</subject><subject>Single extraction</subject><subject>Soil</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkc2O0zAUhSMEYjoDD8AGeYPYTIN_k5RZjSp-Ko0EQsPacpyb1pXjFF8H2tfjyXCnBXaIlXV9v3vusU9RvGC0ZJRVb7alsabk9FjzkvLmUTFjTS3mUnD5uJhRSsWcVzW9KC4Rt7nkjMqnxQVnQkhZ17Pi5_0GSBw9kLEndgPDOECKziJxgaAL69wxoSMI3yYIyRlPYJ-iscmNgRhEc8C35JZ8ge8OfpTks4mJrFYlWfoJE8Q8bPwBHV6TYfLJ7bKedwFMJBHWERCzTu65fZpidgI4-ik93MF-B9ENeWte2gG6dXiwMqZN1k1gN8FlU_iseNIbj_D8fF4VX9-_u19-nN99-rBa3t7NrVR1mlet7KvGKGYtgFUK2raGHvrOCruo2pYvmFBC9J2ykradoXVtqe1lY6BTrVqIq-L1SXcXx-PepAeHFrw3AcYJdaMayRmT6j9IwTlXdZVJdiJtHBEj9HqXn2ziQTOqjxnrrc4Z62PGmnGdM84zL8_qUztA92fid6gZeHUGDFrj-2iCdfiXE4tMKZa5mxMH-ddyfFGjdRAsdC6CTbob3T9s_AL8GMly</recordid><startdate>20110304</startdate><enddate>20110304</enddate><creator>Giacomino, Agnese</creator><creator>Abollino, Ornella</creator><creator>Malandrino, Mery</creator><creator>Mentasti, Edoardo</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110304</creationdate><title>The role of chemometrics in single and sequential extraction assays: A Review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques</title><author>Giacomino, Agnese ; Abollino, Ornella ; Malandrino, Mery ; Mentasti, Edoardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-6b4f68a51cceec55ebb7efefdc3c96bb2913533fd5c40bda077c0cf48aed5b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Chemometrics</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Extraction</topic><topic>Fractionation</topic><topic>General, instrumentation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multivariate statistics</topic><topic>Pattern recognition</topic><topic>Regression</topic><topic>Sediment</topic><topic>Sequential extraction</topic><topic>Single extraction</topic><topic>Soil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giacomino, Agnese</creatorcontrib><creatorcontrib>Abollino, Ornella</creatorcontrib><creatorcontrib>Malandrino, Mery</creatorcontrib><creatorcontrib>Mentasti, Edoardo</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giacomino, Agnese</au><au>Abollino, Ornella</au><au>Malandrino, Mery</au><au>Mentasti, Edoardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of chemometrics in single and sequential extraction assays: A Review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2011-03-04</date><risdate>2011</risdate><volume>688</volume><issue>2</issue><spage>122</spage><epage>139</epage><pages>122-139</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><coden>ACACAM</coden><abstract>Single and sequential extraction procedures are used for studying element mobility and availability in solid matrices, like soils, sediments, sludge, and airborne particulate matter. In the first part of this review we reported an overview on these procedures and described the applications of chemometric uni- and bivariate techniques and of multivariate pattern recognition techniques based on variable reduction to the experimental results obtained. The second part of the review deals with the use of chemometrics not only for the visualization and interpretation of data, but also for the investigation of the effects of experimental conditions on the response, the optimization of their values and the calculation of element fractionation. We will describe the principles of the multivariate chemometric techniques considered, the aims for which they were applied and the key findings obtained. The following topics will be critically addressed: pattern recognition by cluster analysis (CA), linear discriminant analysis (LDA) and other less common techniques; modelling by multiple linear regression (MLR); investigation of spatial distribution of variables by geostatistics; calculation of fractionation patterns by a mixture resolution method (Chemometric Identification of Substrates and Element Distributions, CISED); optimization and characterization of extraction procedures by experimental design; other multivariate techniques less commonly applied.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>21334477</pmid><doi>10.1016/j.aca.2010.12.028</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2670 |
ispartof | Analytica chimica acta, 2011-03, Vol.688 (2), p.122-139 |
issn | 0003-2670 1873-4324 |
language | eng |
recordid | cdi_proquest_miscellaneous_858421145 |
source | Elsevier ScienceDirect Journals |
subjects | Analytical chemistry Chemistry Chemometrics Design engineering Exact sciences and technology Extraction Fractionation General, instrumentation Mathematical analysis Mathematical models Multivariate statistics Pattern recognition Regression Sediment Sequential extraction Single extraction Soil |
title | The role of chemometrics in single and sequential extraction assays: A Review. Part II. Cluster analysis, multiple linear regression, mixture resolution, experimental design and other techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20chemometrics%20in%20single%20and%20sequential%20extraction%20assays:%20A%20Review.%20Part%20II.%20Cluster%20analysis,%20multiple%20linear%20regression,%20mixture%20resolution,%20experimental%20design%20and%20other%20techniques&rft.jtitle=Analytica%20chimica%20acta&rft.au=Giacomino,%20Agnese&rft.date=2011-03-04&rft.volume=688&rft.issue=2&rft.spage=122&rft.epage=139&rft.pages=122-139&rft.issn=0003-2670&rft.eissn=1873-4324&rft.coden=ACACAM&rft_id=info:doi/10.1016/j.aca.2010.12.028&rft_dat=%3Cproquest_cross%3E858421145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=853222576&rft_id=info:pmid/21334477&rft_els_id=S0003267010015977&rfr_iscdi=true |