Electronic structure and chemical bond in naphthalene and anthracene

We investigated the electronic structure of crystalline naphthalene and anthracene within the framework of density functional theory including van der Waals interactions (DFT-D). It is established that for better agreement with experimental values it is necessary to use the increased values of the v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2011-04, Vol.13 (13), p.5679-5686
Hauptverfasser: Fedorov, Igor A, Zhuravlev, Yurii N, Berveno, Victor P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated the electronic structure of crystalline naphthalene and anthracene within the framework of density functional theory including van der Waals interactions (DFT-D). It is established that for better agreement with experimental values it is necessary to use the increased values of the van der Waals radii, which is caused by an overestimated value of the van der Waals interactions in crystalline linear oligoacenes. Utilization of the DFT-D leads to a correct account of the dispersion forces, which results in a high precision of the computed lattice parameters and cohesive energy. Based on the relaxed crystal structures, we have computed the total and deformation electron density and determined the mechanism of chemical bonds formation in crystals of naphthalene and anthracene. It has been established that the chemical bond in molecular crystals is formed under the influence of not only intramolecular but also intermolecular interactions. On the basis of the Mulliken population analysis it was revealed that two C(3) atoms in naphthalene (or C(3) and C(4) in anthracene) have a positive charge and the population of the rest of the carbon atoms increased, as compared with isolated molecule. Within the framework of DFT-D, we have computed the total and deformation electron density for crystalline naphthalene and anthracene.
ISSN:1463-9076
1463-9084
DOI:10.1039/c0cp02200d