Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation

We estimate the parameters of a stochastic process model for a macroparasite population within a host using approximate Bayesian computation (ABC). The immunity of the host is an unobserved model variable and only mature macroparasites at sacrifice of the host are counted. With very limited data, pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2011-03, Vol.67 (1), p.225-233
Hauptverfasser: Drovandi, C. C., Pettitt, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233
container_issue 1
container_start_page 225
container_title Biometrics
container_volume 67
creator Drovandi, C. C.
Pettitt, A. N.
description We estimate the parameters of a stochastic process model for a macroparasite population within a host using approximate Bayesian computation (ABC). The immunity of the host is an unobserved model variable and only mature macroparasites at sacrifice of the host are counted. With very limited data, process rates are inferred reasonably precisely. Modeling involves a three variable Markov process for which the observed data likelihood is computationally intractable. ABC methods are particularly useful when the likelihood is analytically or computationally intractable. The ABC algorithm we present is based on sequential Monte Carlo, is adaptive in nature, and overcomes some drawbacks of previous approaches to ABC. The algorithm is validated on a test example involving simulated data from an autologistic model before being used to infer parameters of the Markov process model for experimental data. The fitted model explains the observed extra-binomial variation in terms of a zero-one immunity variable, which has a short-lived presence in the host.
doi_str_mv 10.1111/j.1541-0420.2010.01410.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_857288904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41242453</jstor_id><sourcerecordid>41242453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5720-effdb25e400d4c47bb06d05c06992bd59f8426e54c8dfceb2bdb2ea381e5a9543</originalsourceid><addsrcrecordid>eNqNUcFu1DAQtRCILqWfALK49JTFduwkviC1y1Jaum0PrUBcLCcZo4QkDnYCu3-Ps2n3wAkf7PG8N8_jNwhhSpY0rPf1kgpOI8IZWTISsoTysG-focUBeI4WhJAkijn9doReeV-HqxSEvURHjMRccJkskFn7oWr1UNkOW4PvtNMtDOA8NtbhjS6c7UPOVwPgO9uPzUxd_7bNuI8efNX9wGd97-x2EgJ8rnfgK93hlW37cdgXvEYvjG48nDyex-jh0_p-9Tm6vr24XJ1dR4VIGYnAmDJnAjghJS94muckKYkoSCIly0shTcZZAoIXWWkKyEMuZ6DjjILQUvD4GJ3OuqGdXyP4QbWVL6BpdAd29CoLz2SZJBPz3T_M2o6uC80FUiJTHjMaSNlMCjZ478Co3oVPup2iRE2TULWaDFeT4WqahNpPQm1D6dtH_TFvoTwUPlkfCB9mwp-qgd1_C6vzy9vNFAaBN7NA7QfrDgKcMs64iAMezXjlB9gecO1-qiSNU6G-3lwoSb_ciKvNd_Ux_gvRJbGP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856974321</pqid></control><display><type>article</type><title>Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><source>JSTOR</source><source>Oxford Journals</source><creator>Drovandi, C. C. ; Pettitt, A. N.</creator><creatorcontrib>Drovandi, C. C. ; Pettitt, A. N.</creatorcontrib><description>We estimate the parameters of a stochastic process model for a macroparasite population within a host using approximate Bayesian computation (ABC). The immunity of the host is an unobserved model variable and only mature macroparasites at sacrifice of the host are counted. With very limited data, process rates are inferred reasonably precisely. Modeling involves a three variable Markov process for which the observed data likelihood is computationally intractable. ABC methods are particularly useful when the likelihood is analytically or computationally intractable. The ABC algorithm we present is based on sequential Monte Carlo, is adaptive in nature, and overcomes some drawbacks of previous approaches to ABC. The algorithm is validated on a test example involving simulated data from an autologistic model before being used to infer parameters of the Markov process model for experimental data. The fitted model explains the observed extra-binomial variation in terms of a zero-one immunity variable, which has a short-lived presence in the host.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2010.01410.x</identifier><identifier>PMID: 20345496</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>Animals ; Approximate Bayesian computation ; Autologistic model ; Bayes Theorem ; Bayesian analysis ; BIOMETRIC METHODOLOGY ; Biometrics ; Brugia pahangi - genetics ; Cats - parasitology ; Computer Simulation ; Descriptive statistics ; Evolution, Molecular ; Genetics, Population ; Host-Parasite Interactions - genetics ; Immunity ; Inference ; Larvae ; Macroparasite ; Markov analysis ; Markov process ; Markov processes ; Modeling ; Models, Genetic ; Parameter estimation ; Parametric models ; Parasite hosts ; Parasites ; Sequential Monte Carlo ; Simulations ; Stochastic models</subject><ispartof>Biometrics, 2011-03, Vol.67 (1), p.225-233</ispartof><rights>2011 International Biometric Society</rights><rights>2010, The International Biometric Society</rights><rights>2010, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5720-effdb25e400d4c47bb06d05c06992bd59f8426e54c8dfceb2bdb2ea381e5a9543</citedby><cites>FETCH-LOGICAL-c5720-effdb25e400d4c47bb06d05c06992bd59f8426e54c8dfceb2bdb2ea381e5a9543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41242453$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41242453$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,1418,27929,27930,45579,45580,58022,58026,58255,58259</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20345496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drovandi, C. C.</creatorcontrib><creatorcontrib>Pettitt, A. N.</creatorcontrib><title>Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We estimate the parameters of a stochastic process model for a macroparasite population within a host using approximate Bayesian computation (ABC). The immunity of the host is an unobserved model variable and only mature macroparasites at sacrifice of the host are counted. With very limited data, process rates are inferred reasonably precisely. Modeling involves a three variable Markov process for which the observed data likelihood is computationally intractable. ABC methods are particularly useful when the likelihood is analytically or computationally intractable. The ABC algorithm we present is based on sequential Monte Carlo, is adaptive in nature, and overcomes some drawbacks of previous approaches to ABC. The algorithm is validated on a test example involving simulated data from an autologistic model before being used to infer parameters of the Markov process model for experimental data. The fitted model explains the observed extra-binomial variation in terms of a zero-one immunity variable, which has a short-lived presence in the host.</description><subject>Animals</subject><subject>Approximate Bayesian computation</subject><subject>Autologistic model</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>BIOMETRIC METHODOLOGY</subject><subject>Biometrics</subject><subject>Brugia pahangi - genetics</subject><subject>Cats - parasitology</subject><subject>Computer Simulation</subject><subject>Descriptive statistics</subject><subject>Evolution, Molecular</subject><subject>Genetics, Population</subject><subject>Host-Parasite Interactions - genetics</subject><subject>Immunity</subject><subject>Inference</subject><subject>Larvae</subject><subject>Macroparasite</subject><subject>Markov analysis</subject><subject>Markov process</subject><subject>Markov processes</subject><subject>Modeling</subject><subject>Models, Genetic</subject><subject>Parameter estimation</subject><subject>Parametric models</subject><subject>Parasite hosts</subject><subject>Parasites</subject><subject>Sequential Monte Carlo</subject><subject>Simulations</subject><subject>Stochastic models</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUcFu1DAQtRCILqWfALK49JTFduwkviC1y1Jaum0PrUBcLCcZo4QkDnYCu3-Ps2n3wAkf7PG8N8_jNwhhSpY0rPf1kgpOI8IZWTISsoTysG-focUBeI4WhJAkijn9doReeV-HqxSEvURHjMRccJkskFn7oWr1UNkOW4PvtNMtDOA8NtbhjS6c7UPOVwPgO9uPzUxd_7bNuI8efNX9wGd97-x2EgJ8rnfgK93hlW37cdgXvEYvjG48nDyex-jh0_p-9Tm6vr24XJ1dR4VIGYnAmDJnAjghJS94muckKYkoSCIly0shTcZZAoIXWWkKyEMuZ6DjjILQUvD4GJ3OuqGdXyP4QbWVL6BpdAd29CoLz2SZJBPz3T_M2o6uC80FUiJTHjMaSNlMCjZ478Co3oVPup2iRE2TULWaDFeT4WqahNpPQm1D6dtH_TFvoTwUPlkfCB9mwp-qgd1_C6vzy9vNFAaBN7NA7QfrDgKcMs64iAMezXjlB9gecO1-qiSNU6G-3lwoSb_ciKvNd_Ux_gvRJbGP</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Drovandi, C. C.</creator><creator>Pettitt, A. N.</creator><general>Blackwell Publishing Inc</general><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>201103</creationdate><title>Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation</title><author>Drovandi, C. C. ; Pettitt, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5720-effdb25e400d4c47bb06d05c06992bd59f8426e54c8dfceb2bdb2ea381e5a9543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Approximate Bayesian computation</topic><topic>Autologistic model</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>BIOMETRIC METHODOLOGY</topic><topic>Biometrics</topic><topic>Brugia pahangi - genetics</topic><topic>Cats - parasitology</topic><topic>Computer Simulation</topic><topic>Descriptive statistics</topic><topic>Evolution, Molecular</topic><topic>Genetics, Population</topic><topic>Host-Parasite Interactions - genetics</topic><topic>Immunity</topic><topic>Inference</topic><topic>Larvae</topic><topic>Macroparasite</topic><topic>Markov analysis</topic><topic>Markov process</topic><topic>Markov processes</topic><topic>Modeling</topic><topic>Models, Genetic</topic><topic>Parameter estimation</topic><topic>Parametric models</topic><topic>Parasite hosts</topic><topic>Parasites</topic><topic>Sequential Monte Carlo</topic><topic>Simulations</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drovandi, C. C.</creatorcontrib><creatorcontrib>Pettitt, A. N.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drovandi, C. C.</au><au>Pettitt, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2011-03</date><risdate>2011</risdate><volume>67</volume><issue>1</issue><spage>225</spage><epage>233</epage><pages>225-233</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>We estimate the parameters of a stochastic process model for a macroparasite population within a host using approximate Bayesian computation (ABC). The immunity of the host is an unobserved model variable and only mature macroparasites at sacrifice of the host are counted. With very limited data, process rates are inferred reasonably precisely. Modeling involves a three variable Markov process for which the observed data likelihood is computationally intractable. ABC methods are particularly useful when the likelihood is analytically or computationally intractable. The ABC algorithm we present is based on sequential Monte Carlo, is adaptive in nature, and overcomes some drawbacks of previous approaches to ABC. The algorithm is validated on a test example involving simulated data from an autologistic model before being used to infer parameters of the Markov process model for experimental data. The fitted model explains the observed extra-binomial variation in terms of a zero-one immunity variable, which has a short-lived presence in the host.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>20345496</pmid><doi>10.1111/j.1541-0420.2010.01410.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2011-03, Vol.67 (1), p.225-233
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_857288904
source MEDLINE; Wiley Online Library All Journals; JSTOR; Oxford Journals
subjects Animals
Approximate Bayesian computation
Autologistic model
Bayes Theorem
Bayesian analysis
BIOMETRIC METHODOLOGY
Biometrics
Brugia pahangi - genetics
Cats - parasitology
Computer Simulation
Descriptive statistics
Evolution, Molecular
Genetics, Population
Host-Parasite Interactions - genetics
Immunity
Inference
Larvae
Macroparasite
Markov analysis
Markov process
Markov processes
Modeling
Models, Genetic
Parameter estimation
Parametric models
Parasite hosts
Parasites
Sequential Monte Carlo
Simulations
Stochastic models
title Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T19%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Parameters%20for%20Macroparasite%20Population%20Evolution%20Using%20Approximate%20Bayesian%20Computation&rft.jtitle=Biometrics&rft.au=Drovandi,%20C.%20C.&rft.date=2011-03&rft.volume=67&rft.issue=1&rft.spage=225&rft.epage=233&rft.pages=225-233&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2010.01410.x&rft_dat=%3Cjstor_proqu%3E41242453%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856974321&rft_id=info:pmid/20345496&rft_jstor_id=41242453&rfr_iscdi=true