Statistical parametric speech synthesis

This review gives a general overview of techniques used in statistical parametric speech synthesis. One instance of these techniques, called hidden Markov model (HMM)-based speech synthesis, has recently been demonstrated to be very effective in synthesizing acceptable speech. This review also contr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Speech communication 2009-11, Vol.51 (11), p.1039-1064
Hauptverfasser: Zen, Heiga, Tokuda, Keiichi, Black, Alan W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1064
container_issue 11
container_start_page 1039
container_title Speech communication
container_volume 51
creator Zen, Heiga
Tokuda, Keiichi
Black, Alan W.
description This review gives a general overview of techniques used in statistical parametric speech synthesis. One instance of these techniques, called hidden Markov model (HMM)-based speech synthesis, has recently been demonstrated to be very effective in synthesizing acceptable speech. This review also contrasts these techniques with the more conventional technique of unit-selection synthesis that has dominated speech synthesis over the last decade. The advantages and drawbacks of statistical parametric synthesis are highlighted and we identify where we expect key developments to appear in the immediate future.
doi_str_mv 10.1016/j.specom.2009.04.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_85714851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167639309000648</els_id><sourcerecordid>85714851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-7f78f35bcda48eb3971053d6307993c69441e9c398bb0fffa4118dae4d94c9843</originalsourceid><addsrcrecordid>eNqNkLFOwzAURS0EEqXwBwydYEqw45fYXpBQRQGpEgMwW47zorpKmmC7SP17XIUZmO5y7hkOIdeM5oyy6m6bhxHt0OcFpSqnkFMKJ2TGpCgywWRxSmYJE1nFFT8nFyFsaSKkLGbk9i2a6EJ01nSL0XjTY_TOLpIQ7WYRDru4weDCJTlrTRfw6mfn5GP1-L58ztavTy_Lh3VmAXjMRCtky8vaNgYk1lwJRkveVJwKpbitFABDZbmSdU3btjXAmGwMQqPAKgl8Tm4m7-iHzz2GqHsXLHad2eGwD1qWgoEs2T9AXkDF_zZykEwqRhMIE2j9EILHVo_e9cYfNKP62Flv9dRZHztrCjpVTLf76YYpy5dDr4N1uLPYOI826mZwvwu-ATZOh00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34818910</pqid></control><display><type>article</type><title>Statistical parametric speech synthesis</title><source>Elsevier ScienceDirect Journals</source><creator>Zen, Heiga ; Tokuda, Keiichi ; Black, Alan W.</creator><creatorcontrib>Zen, Heiga ; Tokuda, Keiichi ; Black, Alan W.</creatorcontrib><description>This review gives a general overview of techniques used in statistical parametric speech synthesis. One instance of these techniques, called hidden Markov model (HMM)-based speech synthesis, has recently been demonstrated to be very effective in synthesizing acceptable speech. This review also contrasts these techniques with the more conventional technique of unit-selection synthesis that has dominated speech synthesis over the last decade. The advantages and drawbacks of statistical parametric synthesis are highlighted and we identify where we expect key developments to appear in the immediate future.</description><identifier>ISSN: 0167-6393</identifier><identifier>EISSN: 1872-7182</identifier><identifier>DOI: 10.1016/j.specom.2009.04.004</identifier><identifier>CODEN: SCOMDH</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Hidden Markov models ; Speech synthesis ; Unit selection</subject><ispartof>Speech communication, 2009-11, Vol.51 (11), p.1039-1064</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-7f78f35bcda48eb3971053d6307993c69441e9c398bb0fffa4118dae4d94c9843</citedby><cites>FETCH-LOGICAL-c443t-7f78f35bcda48eb3971053d6307993c69441e9c398bb0fffa4118dae4d94c9843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167639309000648$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zen, Heiga</creatorcontrib><creatorcontrib>Tokuda, Keiichi</creatorcontrib><creatorcontrib>Black, Alan W.</creatorcontrib><title>Statistical parametric speech synthesis</title><title>Speech communication</title><description>This review gives a general overview of techniques used in statistical parametric speech synthesis. One instance of these techniques, called hidden Markov model (HMM)-based speech synthesis, has recently been demonstrated to be very effective in synthesizing acceptable speech. This review also contrasts these techniques with the more conventional technique of unit-selection synthesis that has dominated speech synthesis over the last decade. The advantages and drawbacks of statistical parametric synthesis are highlighted and we identify where we expect key developments to appear in the immediate future.</description><subject>Hidden Markov models</subject><subject>Speech synthesis</subject><subject>Unit selection</subject><issn>0167-6393</issn><issn>1872-7182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkLFOwzAURS0EEqXwBwydYEqw45fYXpBQRQGpEgMwW47zorpKmmC7SP17XIUZmO5y7hkOIdeM5oyy6m6bhxHt0OcFpSqnkFMKJ2TGpCgywWRxSmYJE1nFFT8nFyFsaSKkLGbk9i2a6EJ01nSL0XjTY_TOLpIQ7WYRDru4weDCJTlrTRfw6mfn5GP1-L58ztavTy_Lh3VmAXjMRCtky8vaNgYk1lwJRkveVJwKpbitFABDZbmSdU3btjXAmGwMQqPAKgl8Tm4m7-iHzz2GqHsXLHad2eGwD1qWgoEs2T9AXkDF_zZykEwqRhMIE2j9EILHVo_e9cYfNKP62Flv9dRZHztrCjpVTLf76YYpy5dDr4N1uLPYOI826mZwvwu-ATZOh00</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Zen, Heiga</creator><creator>Tokuda, Keiichi</creator><creator>Black, Alan W.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BM</scope><scope>7T9</scope></search><sort><creationdate>20091101</creationdate><title>Statistical parametric speech synthesis</title><author>Zen, Heiga ; Tokuda, Keiichi ; Black, Alan W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-7f78f35bcda48eb3971053d6307993c69441e9c398bb0fffa4118dae4d94c9843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Hidden Markov models</topic><topic>Speech synthesis</topic><topic>Unit selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zen, Heiga</creatorcontrib><creatorcontrib>Tokuda, Keiichi</creatorcontrib><creatorcontrib>Black, Alan W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ComDisDome</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>Speech communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zen, Heiga</au><au>Tokuda, Keiichi</au><au>Black, Alan W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical parametric speech synthesis</atitle><jtitle>Speech communication</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>51</volume><issue>11</issue><spage>1039</spage><epage>1064</epage><pages>1039-1064</pages><issn>0167-6393</issn><eissn>1872-7182</eissn><coden>SCOMDH</coden><abstract>This review gives a general overview of techniques used in statistical parametric speech synthesis. One instance of these techniques, called hidden Markov model (HMM)-based speech synthesis, has recently been demonstrated to be very effective in synthesizing acceptable speech. This review also contrasts these techniques with the more conventional technique of unit-selection synthesis that has dominated speech synthesis over the last decade. The advantages and drawbacks of statistical parametric synthesis are highlighted and we identify where we expect key developments to appear in the immediate future.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.specom.2009.04.004</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6393
ispartof Speech communication, 2009-11, Vol.51 (11), p.1039-1064
issn 0167-6393
1872-7182
language eng
recordid cdi_proquest_miscellaneous_85714851
source Elsevier ScienceDirect Journals
subjects Hidden Markov models
Speech synthesis
Unit selection
title Statistical parametric speech synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20parametric%20speech%20synthesis&rft.jtitle=Speech%20communication&rft.au=Zen,%20Heiga&rft.date=2009-11-01&rft.volume=51&rft.issue=11&rft.spage=1039&rft.epage=1064&rft.pages=1039-1064&rft.issn=0167-6393&rft.eissn=1872-7182&rft.coden=SCOMDH&rft_id=info:doi/10.1016/j.specom.2009.04.004&rft_dat=%3Cproquest_cross%3E85714851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34818910&rft_id=info:pmid/&rft_els_id=S0167639309000648&rfr_iscdi=true