Statistical parametric speech synthesis
This review gives a general overview of techniques used in statistical parametric speech synthesis. One instance of these techniques, called hidden Markov model (HMM)-based speech synthesis, has recently been demonstrated to be very effective in synthesizing acceptable speech. This review also contr...
Gespeichert in:
Veröffentlicht in: | Speech communication 2009-11, Vol.51 (11), p.1039-1064 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1064 |
---|---|
container_issue | 11 |
container_start_page | 1039 |
container_title | Speech communication |
container_volume | 51 |
creator | Zen, Heiga Tokuda, Keiichi Black, Alan W. |
description | This review gives a general overview of techniques used in
statistical parametric speech synthesis. One instance of these techniques, called hidden Markov model (HMM)-based speech synthesis, has recently been demonstrated to be very effective in synthesizing acceptable speech. This review also contrasts these techniques with the more conventional technique of unit-selection synthesis that has dominated speech synthesis over the last decade. The advantages and drawbacks of statistical parametric synthesis are highlighted and we identify where we expect key developments to appear in the immediate future. |
doi_str_mv | 10.1016/j.specom.2009.04.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_85714851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167639309000648</els_id><sourcerecordid>85714851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-7f78f35bcda48eb3971053d6307993c69441e9c398bb0fffa4118dae4d94c9843</originalsourceid><addsrcrecordid>eNqNkLFOwzAURS0EEqXwBwydYEqw45fYXpBQRQGpEgMwW47zorpKmmC7SP17XIUZmO5y7hkOIdeM5oyy6m6bhxHt0OcFpSqnkFMKJ2TGpCgywWRxSmYJE1nFFT8nFyFsaSKkLGbk9i2a6EJ01nSL0XjTY_TOLpIQ7WYRDru4weDCJTlrTRfw6mfn5GP1-L58ztavTy_Lh3VmAXjMRCtky8vaNgYk1lwJRkveVJwKpbitFABDZbmSdU3btjXAmGwMQqPAKgl8Tm4m7-iHzz2GqHsXLHad2eGwD1qWgoEs2T9AXkDF_zZykEwqRhMIE2j9EILHVo_e9cYfNKP62Flv9dRZHztrCjpVTLf76YYpy5dDr4N1uLPYOI826mZwvwu-ATZOh00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34818910</pqid></control><display><type>article</type><title>Statistical parametric speech synthesis</title><source>Elsevier ScienceDirect Journals</source><creator>Zen, Heiga ; Tokuda, Keiichi ; Black, Alan W.</creator><creatorcontrib>Zen, Heiga ; Tokuda, Keiichi ; Black, Alan W.</creatorcontrib><description>This review gives a general overview of techniques used in
statistical parametric speech synthesis. One instance of these techniques, called hidden Markov model (HMM)-based speech synthesis, has recently been demonstrated to be very effective in synthesizing acceptable speech. This review also contrasts these techniques with the more conventional technique of unit-selection synthesis that has dominated speech synthesis over the last decade. The advantages and drawbacks of statistical parametric synthesis are highlighted and we identify where we expect key developments to appear in the immediate future.</description><identifier>ISSN: 0167-6393</identifier><identifier>EISSN: 1872-7182</identifier><identifier>DOI: 10.1016/j.specom.2009.04.004</identifier><identifier>CODEN: SCOMDH</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Hidden Markov models ; Speech synthesis ; Unit selection</subject><ispartof>Speech communication, 2009-11, Vol.51 (11), p.1039-1064</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-7f78f35bcda48eb3971053d6307993c69441e9c398bb0fffa4118dae4d94c9843</citedby><cites>FETCH-LOGICAL-c443t-7f78f35bcda48eb3971053d6307993c69441e9c398bb0fffa4118dae4d94c9843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167639309000648$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zen, Heiga</creatorcontrib><creatorcontrib>Tokuda, Keiichi</creatorcontrib><creatorcontrib>Black, Alan W.</creatorcontrib><title>Statistical parametric speech synthesis</title><title>Speech communication</title><description>This review gives a general overview of techniques used in
statistical parametric speech synthesis. One instance of these techniques, called hidden Markov model (HMM)-based speech synthesis, has recently been demonstrated to be very effective in synthesizing acceptable speech. This review also contrasts these techniques with the more conventional technique of unit-selection synthesis that has dominated speech synthesis over the last decade. The advantages and drawbacks of statistical parametric synthesis are highlighted and we identify where we expect key developments to appear in the immediate future.</description><subject>Hidden Markov models</subject><subject>Speech synthesis</subject><subject>Unit selection</subject><issn>0167-6393</issn><issn>1872-7182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkLFOwzAURS0EEqXwBwydYEqw45fYXpBQRQGpEgMwW47zorpKmmC7SP17XIUZmO5y7hkOIdeM5oyy6m6bhxHt0OcFpSqnkFMKJ2TGpCgywWRxSmYJE1nFFT8nFyFsaSKkLGbk9i2a6EJ01nSL0XjTY_TOLpIQ7WYRDru4weDCJTlrTRfw6mfn5GP1-L58ztavTy_Lh3VmAXjMRCtky8vaNgYk1lwJRkveVJwKpbitFABDZbmSdU3btjXAmGwMQqPAKgl8Tm4m7-iHzz2GqHsXLHad2eGwD1qWgoEs2T9AXkDF_zZykEwqRhMIE2j9EILHVo_e9cYfNKP62Flv9dRZHztrCjpVTLf76YYpy5dDr4N1uLPYOI826mZwvwu-ATZOh00</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Zen, Heiga</creator><creator>Tokuda, Keiichi</creator><creator>Black, Alan W.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>8BM</scope><scope>7T9</scope></search><sort><creationdate>20091101</creationdate><title>Statistical parametric speech synthesis</title><author>Zen, Heiga ; Tokuda, Keiichi ; Black, Alan W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-7f78f35bcda48eb3971053d6307993c69441e9c398bb0fffa4118dae4d94c9843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Hidden Markov models</topic><topic>Speech synthesis</topic><topic>Unit selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zen, Heiga</creatorcontrib><creatorcontrib>Tokuda, Keiichi</creatorcontrib><creatorcontrib>Black, Alan W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ComDisDome</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>Speech communication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zen, Heiga</au><au>Tokuda, Keiichi</au><au>Black, Alan W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical parametric speech synthesis</atitle><jtitle>Speech communication</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>51</volume><issue>11</issue><spage>1039</spage><epage>1064</epage><pages>1039-1064</pages><issn>0167-6393</issn><eissn>1872-7182</eissn><coden>SCOMDH</coden><abstract>This review gives a general overview of techniques used in
statistical parametric speech synthesis. One instance of these techniques, called hidden Markov model (HMM)-based speech synthesis, has recently been demonstrated to be very effective in synthesizing acceptable speech. This review also contrasts these techniques with the more conventional technique of unit-selection synthesis that has dominated speech synthesis over the last decade. The advantages and drawbacks of statistical parametric synthesis are highlighted and we identify where we expect key developments to appear in the immediate future.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.specom.2009.04.004</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6393 |
ispartof | Speech communication, 2009-11, Vol.51 (11), p.1039-1064 |
issn | 0167-6393 1872-7182 |
language | eng |
recordid | cdi_proquest_miscellaneous_85714851 |
source | Elsevier ScienceDirect Journals |
subjects | Hidden Markov models Speech synthesis Unit selection |
title | Statistical parametric speech synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20parametric%20speech%20synthesis&rft.jtitle=Speech%20communication&rft.au=Zen,%20Heiga&rft.date=2009-11-01&rft.volume=51&rft.issue=11&rft.spage=1039&rft.epage=1064&rft.pages=1039-1064&rft.issn=0167-6393&rft.eissn=1872-7182&rft.coden=SCOMDH&rft_id=info:doi/10.1016/j.specom.2009.04.004&rft_dat=%3Cproquest_cross%3E85714851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34818910&rft_id=info:pmid/&rft_els_id=S0167639309000648&rfr_iscdi=true |