Cyclicity of laryngeal cavity resonance due to vocal fold vibration
Acoustic effects of the time-varying glottal area due to vocal fold vibration on the laryngeal cavity resonance were investigated based on vocal tract area functions and acoustic analysis. The laryngeal cavity consists of the vestibular and ventricular parts of the larynx, and gives rise to a region...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2006-10, Vol.120 (4), p.2239-2249 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2249 |
---|---|
container_issue | 4 |
container_start_page | 2239 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 120 |
creator | Kitamura, Tatsuya Takemoto, Hironori Adachi, Seiji Mokhtari, Parham Honda, Kiyoshi |
description | Acoustic effects of the time-varying glottal area due to vocal fold vibration on the laryngeal cavity resonance were investigated based on vocal tract area functions and acoustic analysis. The laryngeal cavity consists of the vestibular and ventricular parts of the larynx, and gives rise to a regional acoustic resonance within the vocal tract, with this resonance imparting an extra formant to the vocal tract resonance pattern. Vocal tract transfer functions of the five Japanese vowels uttered by three male subjects were calculated under open- and closed-glottis conditions. The results revealed that the resonance appears at the frequency region from 3.0 to
3.7
kHz
when the glottis is closed and disappears when it is open. Real spectra estimated from open- and closed-glottis periods of vowel sounds also showed the on-off pattern of the resonance within a pitch period. Furthermore, a time-domain acoustic analysis of vowels indicated that the resonance component could be observed as a pitch-synchronized rise-and-fall pattern of the bandpass amplitude. The cyclic nature of the resonance can be explained as the laryngeal cavity acting as a closed tube that generates the resonance during a closed-glottis period, but damps the resonance off during an open-glottis period. |
doi_str_mv | 10.1121/1.2335428 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_85684393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>85684393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-20f72d65437f68e3217d58fc24fc4b7ed6dcf80bbb4d58ad31132c620f66d1793</originalsourceid><addsrcrecordid>eNqFkUtLAzEQgIMotlYP_gHZi4KHrXlv9iKUxRcUvOg5ZPOQle2mJruF_ntTu9iTeAoz-TKT-QaASwTnCGF0h-aYEEaxOAJTxDDMBcP0GEwhhCinJecTcBbjZwqZIOUpmKAC8pKgcgqqaqvbRjf9NvMua1XYdh9WtZlWm10u2Og71WmbmcFmvc82Xqdb51uTbZo6qL7x3Tk4caqN9mI8Z-D98eGtes6Xr08v1WKZa8pZn2PoCmw4o6RwXFiCUWGYcBpTp2ldWMONdgLWdU1TXhmCEMGap2ecG1SUZAZu9nXXwX8NNvZy1URt21Z11g9RCsYFJSX5F-QlhERQnsDbPaiDjzFYJ9ehWSUJEkG5UyuRHNUm9mosOtQraw7k6DIB1yOgYpLkQvLWxAMn0sAC7353v-di0v4j8O-uv9uR3slxO-QbvhCU2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69003846</pqid></control><display><type>article</type><title>Cyclicity of laryngeal cavity resonance due to vocal fold vibration</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Kitamura, Tatsuya ; Takemoto, Hironori ; Adachi, Seiji ; Mokhtari, Parham ; Honda, Kiyoshi</creator><creatorcontrib>Kitamura, Tatsuya ; Takemoto, Hironori ; Adachi, Seiji ; Mokhtari, Parham ; Honda, Kiyoshi</creatorcontrib><description>Acoustic effects of the time-varying glottal area due to vocal fold vibration on the laryngeal cavity resonance were investigated based on vocal tract area functions and acoustic analysis. The laryngeal cavity consists of the vestibular and ventricular parts of the larynx, and gives rise to a regional acoustic resonance within the vocal tract, with this resonance imparting an extra formant to the vocal tract resonance pattern. Vocal tract transfer functions of the five Japanese vowels uttered by three male subjects were calculated under open- and closed-glottis conditions. The results revealed that the resonance appears at the frequency region from 3.0 to
3.7
kHz
when the glottis is closed and disappears when it is open. Real spectra estimated from open- and closed-glottis periods of vowel sounds also showed the on-off pattern of the resonance within a pitch period. Furthermore, a time-domain acoustic analysis of vowels indicated that the resonance component could be observed as a pitch-synchronized rise-and-fall pattern of the bandpass amplitude. The cyclic nature of the resonance can be explained as the laryngeal cavity acting as a closed tube that generates the resonance during a closed-glottis period, but damps the resonance off during an open-glottis period.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.2335428</identifier><identifier>PMID: 17069319</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>Woodbury, NY: Acoustical Society of America</publisher><subject>Acoustics ; Adult ; Biological and medical sciences ; Computer Simulation ; Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation ; Fundamental and applied biological sciences. Psychology ; Glottis - physiology ; Humans ; Larynx - physiology ; Magnetic Resonance Imaging ; Male ; Models, Biological ; Sound Spectrography ; Time Factors ; Vertebrates: nervous system and sense organs ; Vibration ; Vocal Cords - physiology ; Voice - physiology</subject><ispartof>The Journal of the Acoustical Society of America, 2006-10, Vol.120 (4), p.2239-2249</ispartof><rights>2006 Acoustical Society of America</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-20f72d65437f68e3217d58fc24fc4b7ed6dcf80bbb4d58ad31132c620f66d1793</citedby><cites>FETCH-LOGICAL-c465t-20f72d65437f68e3217d58fc24fc4b7ed6dcf80bbb4d58ad31132c620f66d1793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/1.2335428$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,776,780,790,1559,4498,27903,27904,76130</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18217823$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17069319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kitamura, Tatsuya</creatorcontrib><creatorcontrib>Takemoto, Hironori</creatorcontrib><creatorcontrib>Adachi, Seiji</creatorcontrib><creatorcontrib>Mokhtari, Parham</creatorcontrib><creatorcontrib>Honda, Kiyoshi</creatorcontrib><title>Cyclicity of laryngeal cavity resonance due to vocal fold vibration</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>Acoustic effects of the time-varying glottal area due to vocal fold vibration on the laryngeal cavity resonance were investigated based on vocal tract area functions and acoustic analysis. The laryngeal cavity consists of the vestibular and ventricular parts of the larynx, and gives rise to a regional acoustic resonance within the vocal tract, with this resonance imparting an extra formant to the vocal tract resonance pattern. Vocal tract transfer functions of the five Japanese vowels uttered by three male subjects were calculated under open- and closed-glottis conditions. The results revealed that the resonance appears at the frequency region from 3.0 to
3.7
kHz
when the glottis is closed and disappears when it is open. Real spectra estimated from open- and closed-glottis periods of vowel sounds also showed the on-off pattern of the resonance within a pitch period. Furthermore, a time-domain acoustic analysis of vowels indicated that the resonance component could be observed as a pitch-synchronized rise-and-fall pattern of the bandpass amplitude. The cyclic nature of the resonance can be explained as the laryngeal cavity acting as a closed tube that generates the resonance during a closed-glottis period, but damps the resonance off during an open-glottis period.</description><subject>Acoustics</subject><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glottis - physiology</subject><subject>Humans</subject><subject>Larynx - physiology</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Sound Spectrography</subject><subject>Time Factors</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Vibration</subject><subject>Vocal Cords - physiology</subject><subject>Voice - physiology</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLAzEQgIMotlYP_gHZi4KHrXlv9iKUxRcUvOg5ZPOQle2mJruF_ntTu9iTeAoz-TKT-QaASwTnCGF0h-aYEEaxOAJTxDDMBcP0GEwhhCinJecTcBbjZwqZIOUpmKAC8pKgcgqqaqvbRjf9NvMua1XYdh9WtZlWm10u2Og71WmbmcFmvc82Xqdb51uTbZo6qL7x3Tk4caqN9mI8Z-D98eGtes6Xr08v1WKZa8pZn2PoCmw4o6RwXFiCUWGYcBpTp2ldWMONdgLWdU1TXhmCEMGap2ecG1SUZAZu9nXXwX8NNvZy1URt21Z11g9RCsYFJSX5F-QlhERQnsDbPaiDjzFYJ9ehWSUJEkG5UyuRHNUm9mosOtQraw7k6DIB1yOgYpLkQvLWxAMn0sAC7353v-di0v4j8O-uv9uR3slxO-QbvhCU2A</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Kitamura, Tatsuya</creator><creator>Takemoto, Hironori</creator><creator>Adachi, Seiji</creator><creator>Mokhtari, Parham</creator><creator>Honda, Kiyoshi</creator><general>Acoustical Society of America</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8BM</scope><scope>7T9</scope></search><sort><creationdate>20061001</creationdate><title>Cyclicity of laryngeal cavity resonance due to vocal fold vibration</title><author>Kitamura, Tatsuya ; Takemoto, Hironori ; Adachi, Seiji ; Mokhtari, Parham ; Honda, Kiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-20f72d65437f68e3217d58fc24fc4b7ed6dcf80bbb4d58ad31132c620f66d1793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acoustics</topic><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glottis - physiology</topic><topic>Humans</topic><topic>Larynx - physiology</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Sound Spectrography</topic><topic>Time Factors</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Vibration</topic><topic>Vocal Cords - physiology</topic><topic>Voice - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitamura, Tatsuya</creatorcontrib><creatorcontrib>Takemoto, Hironori</creatorcontrib><creatorcontrib>Adachi, Seiji</creatorcontrib><creatorcontrib>Mokhtari, Parham</creatorcontrib><creatorcontrib>Honda, Kiyoshi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>ComDisDome</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitamura, Tatsuya</au><au>Takemoto, Hironori</au><au>Adachi, Seiji</au><au>Mokhtari, Parham</au><au>Honda, Kiyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cyclicity of laryngeal cavity resonance due to vocal fold vibration</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>120</volume><issue>4</issue><spage>2239</spage><epage>2249</epage><pages>2239-2249</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Acoustic effects of the time-varying glottal area due to vocal fold vibration on the laryngeal cavity resonance were investigated based on vocal tract area functions and acoustic analysis. The laryngeal cavity consists of the vestibular and ventricular parts of the larynx, and gives rise to a regional acoustic resonance within the vocal tract, with this resonance imparting an extra formant to the vocal tract resonance pattern. Vocal tract transfer functions of the five Japanese vowels uttered by three male subjects were calculated under open- and closed-glottis conditions. The results revealed that the resonance appears at the frequency region from 3.0 to
3.7
kHz
when the glottis is closed and disappears when it is open. Real spectra estimated from open- and closed-glottis periods of vowel sounds also showed the on-off pattern of the resonance within a pitch period. Furthermore, a time-domain acoustic analysis of vowels indicated that the resonance component could be observed as a pitch-synchronized rise-and-fall pattern of the bandpass amplitude. The cyclic nature of the resonance can be explained as the laryngeal cavity acting as a closed tube that generates the resonance during a closed-glottis period, but damps the resonance off during an open-glottis period.</abstract><cop>Woodbury, NY</cop><pub>Acoustical Society of America</pub><pmid>17069319</pmid><doi>10.1121/1.2335428</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2006-10, Vol.120 (4), p.2239-2249 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_85684393 |
source | MEDLINE; AIP Journals Complete; AIP Acoustical Society of America |
subjects | Acoustics Adult Biological and medical sciences Computer Simulation Ear and associated structures. Auditory pathways and centers. Hearing. Vocal organ. Phonation. Sound production. Echolocation Fundamental and applied biological sciences. Psychology Glottis - physiology Humans Larynx - physiology Magnetic Resonance Imaging Male Models, Biological Sound Spectrography Time Factors Vertebrates: nervous system and sense organs Vibration Vocal Cords - physiology Voice - physiology |
title | Cyclicity of laryngeal cavity resonance due to vocal fold vibration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cyclicity%20of%20laryngeal%20cavity%20resonance%20due%20to%20vocal%20fold%20vibration&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Kitamura,%20Tatsuya&rft.date=2006-10-01&rft.volume=120&rft.issue=4&rft.spage=2239&rft.epage=2249&rft.pages=2239-2249&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/1.2335428&rft_dat=%3Cproquest_cross%3E85684393%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69003846&rft_id=info:pmid/17069319&rfr_iscdi=true |