Medial surface dynamics of an in vivo canine vocal fold during phonation
Quantitative measurement of the medial surface dynamics of the vocal folds is important for understanding how sound is generated within the larynx. Building upon previous excised hemilarynx studies, the present study extended the hemilarynx methodology to the in vivo canine larynx. Through use of an...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2005-05, Vol.117 (5), p.3174-3183 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantitative measurement of the medial surface dynamics of the vocal folds is important for understanding how sound is generated within the larynx. Building upon previous excised hemilarynx studies, the present study extended the hemilarynx methodology to the in vivo canine larynx. Through use of an in vivo model, the medial surface dynamics of the vocal fold were examined as a function of active thyroarytenoid muscle contraction. Data were collected using high-speed digital imaging at a sampling frequency of 2000 Hz, and a spatial resolution of 1024 x 1024 pixels. Chest-like and fry-like vibrations were observed, but could not be distinguished based on the input stimulation current to the recurrent laryngeal nerve. The subglottal pressure did distinguish the registers, as did an estimate of the thyroarytenoid muscle activity. Upon quantification of the three-dimensional motion, the method of Empirical Eigenfunctions was used to extract the underlying modes of vibration, and to investigate mechanisms of sustained oscillation. Results were compared with previous findings from excised larynx experiments and theoretical models. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/1.1871772 |