The Structure of Background-error Covariance in a Four-dimensional Variational Data Assimilation System: Single-point Experiment
A four dimensional variational data assimilation (4DVar) based on a dimension-reduced projection (DRP-4DVar) has been developed as a hybrid of the 4DVar and Ensemble Kalman filter (EnKF) concepts. Its good flow-dependent features are demonstrated in single-point experiments through comparisons with...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2010-11, Vol.27 (6), p.1303-1310 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1310 |
---|---|
container_issue | 6 |
container_start_page | 1303 |
container_title | Advances in atmospheric sciences |
container_volume | 27 |
creator | 刘娟娟 王斌 王曙东 |
description | A four dimensional variational data assimilation (4DVar) based on a dimension-reduced projection (DRP-4DVar) has been developed as a hybrid of the 4DVar and Ensemble Kalman filter (EnKF) concepts. Its good flow-dependent features are demonstrated in single-point experiments through comparisons with adjointbased 4DVar and three-dimensional variational data (3DVar) assimilations using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5). The results reveal that DRP-4DVar can reasonably generate a background error covariance matrix (simply B-matrix) during the assimilation window from an initial estimation using a number of initial condition dependent historical forecast samples. In contrast, flow-dependence in the B-matrix of MM5 4DVar is barely detectable. It is argued that use of diagonal estimation in the B-matrix of the MM5 4DVar method at the initial time leads to this failure. The experiments also show that the increments produced by DRP-4DVar are anisotropic and no longer symmetric with respect to observation location due to the effects of the weather trends captured in its B-matrix. This differs from the MM5 3DVar which does not consider the influence of heterogeneous forcing on the correlation structure of the B-matrix, a condition that is realistic for many situations. Thus, the MM5 3DVar assimilation could only present an isotropic and homogeneous structure in its increments. |
doi_str_mv | 10.1007/s00376-010-9067-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_856791202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>35559674</cqvip_id><sourcerecordid>856791202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-8e5b1205b4dfecf893aa2d47147c1077a806a3a517e5a5587160feb0f3fd84563</originalsourceid><addsrcrecordid>eNp9kU1uFDEUhC0EEkPgAOwsNqwc7Hb7p5dhSAJSJBYT2Foe9_PEocee2N2IbHOMnIU7cQXcdKRIWbDyk99XZZcKobeMHjNK1YdCKVeSUEZJR6Ui8hlaMS0Z6QTnz9GKNkISJjh9iV6Vcl3pjmu2QneXV4A3Y57cOGXAyeOP1v3Y5TTFnkDOKeN1-mlzsNEBDhFbfJamTPqwh1hCinbA3-f1uMyf7GjxSSlhH4Z_d3hzW0bY__l9jzch7gYghxTiiE9_HSDPJuNr9MLbocCbh_MIfTs7vVx_Jhdfz7-sTy6I46odiQaxZQ0V27b34LzuuLVN3yrWKseoUlZTabkVTIGwQmjFJPWwpZ77XrdC8iP0fvE95HQzQRnNPhQHw2AjpKkYLaTq6gtNJd89Ia9r5hqvQrRVumNqtmML5HIqJYM3h5rH5lvDqJk7MUsnpnZi5k7MrGkWTals3EF-NP6f6OE37irF3U3VmW3tyIcBDBdCdFK1_C8M15ze</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>804789176</pqid></control><display><type>article</type><title>The Structure of Background-error Covariance in a Four-dimensional Variational Data Assimilation System: Single-point Experiment</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>刘娟娟 王斌 王曙东</creator><creatorcontrib>刘娟娟 王斌 王曙东</creatorcontrib><description>A four dimensional variational data assimilation (4DVar) based on a dimension-reduced projection (DRP-4DVar) has been developed as a hybrid of the 4DVar and Ensemble Kalman filter (EnKF) concepts. Its good flow-dependent features are demonstrated in single-point experiments through comparisons with adjointbased 4DVar and three-dimensional variational data (3DVar) assimilations using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5). The results reveal that DRP-4DVar can reasonably generate a background error covariance matrix (simply B-matrix) during the assimilation window from an initial estimation using a number of initial condition dependent historical forecast samples. In contrast, flow-dependence in the B-matrix of MM5 4DVar is barely detectable. It is argued that use of diagonal estimation in the B-matrix of the MM5 4DVar method at the initial time leads to this failure. The experiments also show that the increments produced by DRP-4DVar are anisotropic and no longer symmetric with respect to observation location due to the effects of the weather trends captured in its B-matrix. This differs from the MM5 3DVar which does not consider the influence of heterogeneous forcing on the correlation structure of the B-matrix, a condition that is realistic for many situations. Thus, the MM5 3DVar assimilation could only present an isotropic and homogeneous structure in its increments.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-010-9067-6</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Atmospheric research ; Atmospheric Sciences ; Data assimilation ; Data collection ; Earth and Environmental Science ; Earth Sciences ; Error propagation ; Geophysics/Geodesy ; Kalman filters ; Meteorology ; 三维变分同化 ; 中尺度模式MM5 ; 协方差矩阵 ; 四维变分资料同化 ; 宾夕法尼亚州立大学 ; 误差协方差</subject><ispartof>Advances in atmospheric sciences, 2010-11, Vol.27 (6), p.1303-1310</ispartof><rights>Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-8e5b1205b4dfecf893aa2d47147c1077a806a3a517e5a5587160feb0f3fd84563</citedby><cites>FETCH-LOGICAL-c374t-8e5b1205b4dfecf893aa2d47147c1077a806a3a517e5a5587160feb0f3fd84563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84334X/84334X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00376-010-9067-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00376-010-9067-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>刘娟娟 王斌 王曙东</creatorcontrib><title>The Structure of Background-error Covariance in a Four-dimensional Variational Data Assimilation System: Single-point Experiment</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><addtitle>Advances in Atmospheric Sciences</addtitle><description>A four dimensional variational data assimilation (4DVar) based on a dimension-reduced projection (DRP-4DVar) has been developed as a hybrid of the 4DVar and Ensemble Kalman filter (EnKF) concepts. Its good flow-dependent features are demonstrated in single-point experiments through comparisons with adjointbased 4DVar and three-dimensional variational data (3DVar) assimilations using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5). The results reveal that DRP-4DVar can reasonably generate a background error covariance matrix (simply B-matrix) during the assimilation window from an initial estimation using a number of initial condition dependent historical forecast samples. In contrast, flow-dependence in the B-matrix of MM5 4DVar is barely detectable. It is argued that use of diagonal estimation in the B-matrix of the MM5 4DVar method at the initial time leads to this failure. The experiments also show that the increments produced by DRP-4DVar are anisotropic and no longer symmetric with respect to observation location due to the effects of the weather trends captured in its B-matrix. This differs from the MM5 3DVar which does not consider the influence of heterogeneous forcing on the correlation structure of the B-matrix, a condition that is realistic for many situations. Thus, the MM5 3DVar assimilation could only present an isotropic and homogeneous structure in its increments.</description><subject>Atmospheric research</subject><subject>Atmospheric Sciences</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Error propagation</subject><subject>Geophysics/Geodesy</subject><subject>Kalman filters</subject><subject>Meteorology</subject><subject>三维变分同化</subject><subject>中尺度模式MM5</subject><subject>协方差矩阵</subject><subject>四维变分资料同化</subject><subject>宾夕法尼亚州立大学</subject><subject>误差协方差</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1uFDEUhC0EEkPgAOwsNqwc7Hb7p5dhSAJSJBYT2Foe9_PEocee2N2IbHOMnIU7cQXcdKRIWbDyk99XZZcKobeMHjNK1YdCKVeSUEZJR6Ui8hlaMS0Z6QTnz9GKNkISJjh9iV6Vcl3pjmu2QneXV4A3Y57cOGXAyeOP1v3Y5TTFnkDOKeN1-mlzsNEBDhFbfJamTPqwh1hCinbA3-f1uMyf7GjxSSlhH4Z_d3hzW0bY__l9jzch7gYghxTiiE9_HSDPJuNr9MLbocCbh_MIfTs7vVx_Jhdfz7-sTy6I46odiQaxZQ0V27b34LzuuLVN3yrWKseoUlZTabkVTIGwQmjFJPWwpZ77XrdC8iP0fvE95HQzQRnNPhQHw2AjpKkYLaTq6gtNJd89Ia9r5hqvQrRVumNqtmML5HIqJYM3h5rH5lvDqJk7MUsnpnZi5k7MrGkWTals3EF-NP6f6OE37irF3U3VmW3tyIcBDBdCdFK1_C8M15ze</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>刘娟娟 王斌 王曙东</creator><general>SP Science Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20101101</creationdate><title>The Structure of Background-error Covariance in a Four-dimensional Variational Data Assimilation System: Single-point Experiment</title><author>刘娟娟 王斌 王曙东</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-8e5b1205b4dfecf893aa2d47147c1077a806a3a517e5a5587160feb0f3fd84563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atmospheric research</topic><topic>Atmospheric Sciences</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Error propagation</topic><topic>Geophysics/Geodesy</topic><topic>Kalman filters</topic><topic>Meteorology</topic><topic>三维变分同化</topic><topic>中尺度模式MM5</topic><topic>协方差矩阵</topic><topic>四维变分资料同化</topic><topic>宾夕法尼亚州立大学</topic><topic>误差协方差</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>刘娟娟 王斌 王曙东</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>刘娟娟 王斌 王曙东</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structure of Background-error Covariance in a Four-dimensional Variational Data Assimilation System: Single-point Experiment</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><addtitle>Advances in Atmospheric Sciences</addtitle><date>2010-11-01</date><risdate>2010</risdate><volume>27</volume><issue>6</issue><spage>1303</spage><epage>1310</epage><pages>1303-1310</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>A four dimensional variational data assimilation (4DVar) based on a dimension-reduced projection (DRP-4DVar) has been developed as a hybrid of the 4DVar and Ensemble Kalman filter (EnKF) concepts. Its good flow-dependent features are demonstrated in single-point experiments through comparisons with adjointbased 4DVar and three-dimensional variational data (3DVar) assimilations using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5). The results reveal that DRP-4DVar can reasonably generate a background error covariance matrix (simply B-matrix) during the assimilation window from an initial estimation using a number of initial condition dependent historical forecast samples. In contrast, flow-dependence in the B-matrix of MM5 4DVar is barely detectable. It is argued that use of diagonal estimation in the B-matrix of the MM5 4DVar method at the initial time leads to this failure. The experiments also show that the increments produced by DRP-4DVar are anisotropic and no longer symmetric with respect to observation location due to the effects of the weather trends captured in its B-matrix. This differs from the MM5 3DVar which does not consider the influence of heterogeneous forcing on the correlation structure of the B-matrix, a condition that is realistic for many situations. Thus, the MM5 3DVar assimilation could only present an isotropic and homogeneous structure in its increments.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s00376-010-9067-6</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-1530 |
ispartof | Advances in atmospheric sciences, 2010-11, Vol.27 (6), p.1303-1310 |
issn | 0256-1530 1861-9533 |
language | eng |
recordid | cdi_proquest_miscellaneous_856791202 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Atmospheric research Atmospheric Sciences Data assimilation Data collection Earth and Environmental Science Earth Sciences Error propagation Geophysics/Geodesy Kalman filters Meteorology 三维变分同化 中尺度模式MM5 协方差矩阵 四维变分资料同化 宾夕法尼亚州立大学 误差协方差 |
title | The Structure of Background-error Covariance in a Four-dimensional Variational Data Assimilation System: Single-point Experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A02%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structure%20of%20Background-error%20Covariance%20in%20a%20Four-dimensional%20Variational%20Data%20Assimilation%20System%EF%BC%9A%20Single-point%20Experiment&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=%E5%88%98%E5%A8%9F%E5%A8%9F%20%E7%8E%8B%E6%96%8C%20%E7%8E%8B%E6%9B%99%E4%B8%9C&rft.date=2010-11-01&rft.volume=27&rft.issue=6&rft.spage=1303&rft.epage=1310&rft.pages=1303-1310&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-010-9067-6&rft_dat=%3Cproquest_cross%3E856791202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=804789176&rft_id=info:pmid/&rft_cqvip_id=35559674&rfr_iscdi=true |