Dehydrothermal Crosslinking of Electrospun Collagen

Electrospun collagen scaffolds must be crosslinked to improve stability. Chemical crosslinking methods are often associated with cytotoxicity and can require lengthy rinsing procedures to remove the crosslinker. Physical crosslinking using dehydrothermal (DHT) treatment is utilized to stabilize fibr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue engineering. Part C, Methods Methods, 2011-01, Vol.17 (1), p.9-17
Hauptverfasser: Drexler, Jason W., Powell, Heather M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 9
container_title Tissue engineering. Part C, Methods
container_volume 17
creator Drexler, Jason W.
Powell, Heather M.
description Electrospun collagen scaffolds must be crosslinked to improve stability. Chemical crosslinking methods are often associated with cytotoxicity and can require lengthy rinsing procedures to remove the crosslinker. Physical crosslinking using dehydrothermal (DHT) treatment is utilized to stabilize fibrous collagen sponges; however, little is known regarding the effect of DHT crosslinking on electrospun collagen. To investigate the efficacy of DHT crosslinking, soluble type I collagen was electrospun and exposed to DHT crosslinking, chemical crosslinking with N -(3-dimethylaminopropyl)- N′ -ethylcarbodiimide hydrochloride (EDC; 5 mM), and DHT+EDC. DHT crosslinking produced no change in scaffold fiber diameter or interfiber distance and reduced scaffold degradation. Strength was significantly improved by DHT (139.0 ± 34.9 kPa) compared to control but was weaker than EDC or DHT+EDC (222.7 ± 58.4, 353.3 ± 19.0 kPa, respectively). Fourier transform infrared spectroscopy (FTIR) indicated increased amide bond formation with DHT compared to control but a lower amide bond density than EDC or DHT+EDC. After crosslinking, sterilization, and rinsing (a total of 50 h for DHT, 98 h for EDC, and 122 h for DHT+EDC), fibroblasts adhered and proliferated on all scaffolds; however, cell metabolism was 12% less on DHT scaffolds. These data indicate that DHT crosslinking can be utilized to stabilize electrospun collagen scaffolds; however, a tradeoff exists between scaffold stability/strength and rapid processing.
doi_str_mv 10.1089/ten.tec.2009.0754
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856783049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A248578996</galeid><sourcerecordid>A248578996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-554313752a94345897beea134de0f8b83ae642126fb8e1322c96f19423ca2c63</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMovn-AGym60E3HPCfJstT6AMGN-5BJ79TRmaRmZhb992ZoLSgiEkLC5TuHkxyEzgjOCFb6pgOfdeAyirHOsBR8Bx0SzeSYMU13t3fFD9BR275hnONc6n10QLHQnBB6iNgtvK7mMXSvEBtbj6YxtG1d-ffKL0ahHM1qcF2aLXs_moa6tgvwJ2ivtHULp5vzGL3czV6mD-On5_vH6eRp7AQn3VgIzgiTglrNGRdKywLAEsbngEtVKGYh55TQvCwUEEap03lJNKfMWepydoyu1rbLGD56aDvTVK2DlMFD6FujRC4Vw1wn8vpPkuRUYsmFpgm9-IG-hT769AyjKOUiuckEXa6hha3BVL4MXbRu8DQTypWQSushX_YLldYcmsoFD2WV5t8EZC1wwydHKM0yVo2NK0OwGQo1qdC0nRkKNUOhSXO-ydsXDcy3iq8GEyDXwDC23tcVFBC7f1h_AlXLrDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822454937</pqid></control><display><type>article</type><title>Dehydrothermal Crosslinking of Electrospun Collagen</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Drexler, Jason W. ; Powell, Heather M.</creator><creatorcontrib>Drexler, Jason W. ; Powell, Heather M.</creatorcontrib><description>Electrospun collagen scaffolds must be crosslinked to improve stability. Chemical crosslinking methods are often associated with cytotoxicity and can require lengthy rinsing procedures to remove the crosslinker. Physical crosslinking using dehydrothermal (DHT) treatment is utilized to stabilize fibrous collagen sponges; however, little is known regarding the effect of DHT crosslinking on electrospun collagen. To investigate the efficacy of DHT crosslinking, soluble type I collagen was electrospun and exposed to DHT crosslinking, chemical crosslinking with N -(3-dimethylaminopropyl)- N′ -ethylcarbodiimide hydrochloride (EDC; 5 mM), and DHT+EDC. DHT crosslinking produced no change in scaffold fiber diameter or interfiber distance and reduced scaffold degradation. Strength was significantly improved by DHT (139.0 ± 34.9 kPa) compared to control but was weaker than EDC or DHT+EDC (222.7 ± 58.4, 353.3 ± 19.0 kPa, respectively). Fourier transform infrared spectroscopy (FTIR) indicated increased amide bond formation with DHT compared to control but a lower amide bond density than EDC or DHT+EDC. After crosslinking, sterilization, and rinsing (a total of 50 h for DHT, 98 h for EDC, and 122 h for DHT+EDC), fibroblasts adhered and proliferated on all scaffolds; however, cell metabolism was 12% less on DHT scaffolds. These data indicate that DHT crosslinking can be utilized to stabilize electrospun collagen scaffolds; however, a tradeoff exists between scaffold stability/strength and rapid processing.</description><identifier>ISSN: 1937-3384</identifier><identifier>EISSN: 1937-3392</identifier><identifier>DOI: 10.1089/ten.tec.2009.0754</identifier><identifier>PMID: 20594112</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Amides - chemistry ; Biocompatible Materials ; Biotechnology ; Carbodiimides - chemistry ; Cell Adhesion ; Cell Proliferation ; Cell Survival ; Chemical bonds ; Chemical engineering ; Collagen ; Collagen - chemistry ; Cross-Linking Reagents - chemistry ; Crosslinked polymers ; Dimethylamines - chemistry ; Efficiency ; Electrochemistry ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Humans ; Materials Testing ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Pressure ; Process engineering ; Skin - pathology ; Spectroscopy, Fourier Transform Infrared ; Tensile Strength ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Tissue engineering. Part C, Methods, 2011-01, Vol.17 (1), p.9-17</ispartof><rights>2011, Mary Ann Liebert, Inc.</rights><rights>COPYRIGHT 2011 Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2011, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-554313752a94345897beea134de0f8b83ae642126fb8e1322c96f19423ca2c63</citedby><cites>FETCH-LOGICAL-c541t-554313752a94345897beea134de0f8b83ae642126fb8e1322c96f19423ca2c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20594112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drexler, Jason W.</creatorcontrib><creatorcontrib>Powell, Heather M.</creatorcontrib><title>Dehydrothermal Crosslinking of Electrospun Collagen</title><title>Tissue engineering. Part C, Methods</title><addtitle>Tissue Eng Part C Methods</addtitle><description>Electrospun collagen scaffolds must be crosslinked to improve stability. Chemical crosslinking methods are often associated with cytotoxicity and can require lengthy rinsing procedures to remove the crosslinker. Physical crosslinking using dehydrothermal (DHT) treatment is utilized to stabilize fibrous collagen sponges; however, little is known regarding the effect of DHT crosslinking on electrospun collagen. To investigate the efficacy of DHT crosslinking, soluble type I collagen was electrospun and exposed to DHT crosslinking, chemical crosslinking with N -(3-dimethylaminopropyl)- N′ -ethylcarbodiimide hydrochloride (EDC; 5 mM), and DHT+EDC. DHT crosslinking produced no change in scaffold fiber diameter or interfiber distance and reduced scaffold degradation. Strength was significantly improved by DHT (139.0 ± 34.9 kPa) compared to control but was weaker than EDC or DHT+EDC (222.7 ± 58.4, 353.3 ± 19.0 kPa, respectively). Fourier transform infrared spectroscopy (FTIR) indicated increased amide bond formation with DHT compared to control but a lower amide bond density than EDC or DHT+EDC. After crosslinking, sterilization, and rinsing (a total of 50 h for DHT, 98 h for EDC, and 122 h for DHT+EDC), fibroblasts adhered and proliferated on all scaffolds; however, cell metabolism was 12% less on DHT scaffolds. These data indicate that DHT crosslinking can be utilized to stabilize electrospun collagen scaffolds; however, a tradeoff exists between scaffold stability/strength and rapid processing.</description><subject>Amides - chemistry</subject><subject>Biocompatible Materials</subject><subject>Biotechnology</subject><subject>Carbodiimides - chemistry</subject><subject>Cell Adhesion</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Chemical bonds</subject><subject>Chemical engineering</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Crosslinked polymers</subject><subject>Dimethylamines - chemistry</subject><subject>Efficiency</subject><subject>Electrochemistry</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Humans</subject><subject>Materials Testing</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Pressure</subject><subject>Process engineering</subject><subject>Skin - pathology</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Tensile Strength</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>1937-3384</issn><issn>1937-3392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtLAzEUhYMovn-AGym60E3HPCfJstT6AMGN-5BJ79TRmaRmZhb992ZoLSgiEkLC5TuHkxyEzgjOCFb6pgOfdeAyirHOsBR8Bx0SzeSYMU13t3fFD9BR275hnONc6n10QLHQnBB6iNgtvK7mMXSvEBtbj6YxtG1d-ffKL0ahHM1qcF2aLXs_moa6tgvwJ2ivtHULp5vzGL3czV6mD-On5_vH6eRp7AQn3VgIzgiTglrNGRdKywLAEsbngEtVKGYh55TQvCwUEEap03lJNKfMWepydoyu1rbLGD56aDvTVK2DlMFD6FujRC4Vw1wn8vpPkuRUYsmFpgm9-IG-hT769AyjKOUiuckEXa6hha3BVL4MXbRu8DQTypWQSushX_YLldYcmsoFD2WV5t8EZC1wwydHKM0yVo2NK0OwGQo1qdC0nRkKNUOhSXO-ydsXDcy3iq8GEyDXwDC23tcVFBC7f1h_AlXLrDY</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Drexler, Jason W.</creator><creator>Powell, Heather M.</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20110101</creationdate><title>Dehydrothermal Crosslinking of Electrospun Collagen</title><author>Drexler, Jason W. ; Powell, Heather M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-554313752a94345897beea134de0f8b83ae642126fb8e1322c96f19423ca2c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amides - chemistry</topic><topic>Biocompatible Materials</topic><topic>Biotechnology</topic><topic>Carbodiimides - chemistry</topic><topic>Cell Adhesion</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Chemical bonds</topic><topic>Chemical engineering</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Crosslinked polymers</topic><topic>Dimethylamines - chemistry</topic><topic>Efficiency</topic><topic>Electrochemistry</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Humans</topic><topic>Materials Testing</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Pressure</topic><topic>Process engineering</topic><topic>Skin - pathology</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Tensile Strength</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drexler, Jason W.</creatorcontrib><creatorcontrib>Powell, Heather M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Tissue engineering. Part C, Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drexler, Jason W.</au><au>Powell, Heather M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dehydrothermal Crosslinking of Electrospun Collagen</atitle><jtitle>Tissue engineering. Part C, Methods</jtitle><addtitle>Tissue Eng Part C Methods</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>17</volume><issue>1</issue><spage>9</spage><epage>17</epage><pages>9-17</pages><issn>1937-3384</issn><eissn>1937-3392</eissn><abstract>Electrospun collagen scaffolds must be crosslinked to improve stability. Chemical crosslinking methods are often associated with cytotoxicity and can require lengthy rinsing procedures to remove the crosslinker. Physical crosslinking using dehydrothermal (DHT) treatment is utilized to stabilize fibrous collagen sponges; however, little is known regarding the effect of DHT crosslinking on electrospun collagen. To investigate the efficacy of DHT crosslinking, soluble type I collagen was electrospun and exposed to DHT crosslinking, chemical crosslinking with N -(3-dimethylaminopropyl)- N′ -ethylcarbodiimide hydrochloride (EDC; 5 mM), and DHT+EDC. DHT crosslinking produced no change in scaffold fiber diameter or interfiber distance and reduced scaffold degradation. Strength was significantly improved by DHT (139.0 ± 34.9 kPa) compared to control but was weaker than EDC or DHT+EDC (222.7 ± 58.4, 353.3 ± 19.0 kPa, respectively). Fourier transform infrared spectroscopy (FTIR) indicated increased amide bond formation with DHT compared to control but a lower amide bond density than EDC or DHT+EDC. After crosslinking, sterilization, and rinsing (a total of 50 h for DHT, 98 h for EDC, and 122 h for DHT+EDC), fibroblasts adhered and proliferated on all scaffolds; however, cell metabolism was 12% less on DHT scaffolds. These data indicate that DHT crosslinking can be utilized to stabilize electrospun collagen scaffolds; however, a tradeoff exists between scaffold stability/strength and rapid processing.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>20594112</pmid><doi>10.1089/ten.tec.2009.0754</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1937-3384
ispartof Tissue engineering. Part C, Methods, 2011-01, Vol.17 (1), p.9-17
issn 1937-3384
1937-3392
language eng
recordid cdi_proquest_miscellaneous_856783049
source MEDLINE; Alma/SFX Local Collection
subjects Amides - chemistry
Biocompatible Materials
Biotechnology
Carbodiimides - chemistry
Cell Adhesion
Cell Proliferation
Cell Survival
Chemical bonds
Chemical engineering
Collagen
Collagen - chemistry
Cross-Linking Reagents - chemistry
Crosslinked polymers
Dimethylamines - chemistry
Efficiency
Electrochemistry
Fibroblasts - cytology
Fibroblasts - drug effects
Fibroblasts - metabolism
Humans
Materials Testing
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Pressure
Process engineering
Skin - pathology
Spectroscopy, Fourier Transform Infrared
Tensile Strength
Tissue Engineering - methods
Tissue Scaffolds
title Dehydrothermal Crosslinking of Electrospun Collagen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dehydrothermal%20Crosslinking%20of%20Electrospun%20Collagen&rft.jtitle=Tissue%20engineering.%20Part%20C,%20Methods&rft.au=Drexler,%20Jason%20W.&rft.date=2011-01-01&rft.volume=17&rft.issue=1&rft.spage=9&rft.epage=17&rft.pages=9-17&rft.issn=1937-3384&rft.eissn=1937-3392&rft_id=info:doi/10.1089/ten.tec.2009.0754&rft_dat=%3Cgale_proqu%3EA248578996%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822454937&rft_id=info:pmid/20594112&rft_galeid=A248578996&rfr_iscdi=true