Dehydrothermal Crosslinking of Electrospun Collagen
Electrospun collagen scaffolds must be crosslinked to improve stability. Chemical crosslinking methods are often associated with cytotoxicity and can require lengthy rinsing procedures to remove the crosslinker. Physical crosslinking using dehydrothermal (DHT) treatment is utilized to stabilize fibr...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part C, Methods Methods, 2011-01, Vol.17 (1), p.9-17 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 9 |
container_title | Tissue engineering. Part C, Methods |
container_volume | 17 |
creator | Drexler, Jason W. Powell, Heather M. |
description | Electrospun collagen scaffolds must be crosslinked to improve stability. Chemical crosslinking methods are often associated with cytotoxicity and can require lengthy rinsing procedures to remove the crosslinker. Physical crosslinking using dehydrothermal (DHT) treatment is utilized to stabilize fibrous collagen sponges; however, little is known regarding the effect of DHT crosslinking on electrospun collagen. To investigate the efficacy of DHT crosslinking, soluble type I collagen was electrospun and exposed to DHT crosslinking, chemical crosslinking with
N
-(3-dimethylaminopropyl)-
N′
-ethylcarbodiimide hydrochloride (EDC; 5 mM), and DHT+EDC. DHT crosslinking produced no change in scaffold fiber diameter or interfiber distance and reduced scaffold degradation. Strength was significantly improved by DHT (139.0 ± 34.9 kPa) compared to control but was weaker than EDC or DHT+EDC (222.7 ± 58.4, 353.3 ± 19.0 kPa, respectively). Fourier transform infrared spectroscopy (FTIR) indicated increased amide bond formation with DHT compared to control but a lower amide bond density than EDC or DHT+EDC. After crosslinking, sterilization, and rinsing (a total of 50 h for DHT, 98 h for EDC, and 122 h for DHT+EDC), fibroblasts adhered and proliferated on all scaffolds; however, cell metabolism was 12% less on DHT scaffolds. These data indicate that DHT crosslinking can be utilized to stabilize electrospun collagen scaffolds; however, a tradeoff exists between scaffold stability/strength and rapid processing. |
doi_str_mv | 10.1089/ten.tec.2009.0754 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856783049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A248578996</galeid><sourcerecordid>A248578996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-554313752a94345897beea134de0f8b83ae642126fb8e1322c96f19423ca2c63</originalsourceid><addsrcrecordid>eNqNkUtLAzEUhYMovn-AGym60E3HPCfJstT6AMGN-5BJ79TRmaRmZhb992ZoLSgiEkLC5TuHkxyEzgjOCFb6pgOfdeAyirHOsBR8Bx0SzeSYMU13t3fFD9BR275hnONc6n10QLHQnBB6iNgtvK7mMXSvEBtbj6YxtG1d-ffKL0ahHM1qcF2aLXs_moa6tgvwJ2ivtHULp5vzGL3czV6mD-On5_vH6eRp7AQn3VgIzgiTglrNGRdKywLAEsbngEtVKGYh55TQvCwUEEap03lJNKfMWepydoyu1rbLGD56aDvTVK2DlMFD6FujRC4Vw1wn8vpPkuRUYsmFpgm9-IG-hT769AyjKOUiuckEXa6hha3BVL4MXbRu8DQTypWQSushX_YLldYcmsoFD2WV5t8EZC1wwydHKM0yVo2NK0OwGQo1qdC0nRkKNUOhSXO-ydsXDcy3iq8GEyDXwDC23tcVFBC7f1h_AlXLrDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822454937</pqid></control><display><type>article</type><title>Dehydrothermal Crosslinking of Electrospun Collagen</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Drexler, Jason W. ; Powell, Heather M.</creator><creatorcontrib>Drexler, Jason W. ; Powell, Heather M.</creatorcontrib><description>Electrospun collagen scaffolds must be crosslinked to improve stability. Chemical crosslinking methods are often associated with cytotoxicity and can require lengthy rinsing procedures to remove the crosslinker. Physical crosslinking using dehydrothermal (DHT) treatment is utilized to stabilize fibrous collagen sponges; however, little is known regarding the effect of DHT crosslinking on electrospun collagen. To investigate the efficacy of DHT crosslinking, soluble type I collagen was electrospun and exposed to DHT crosslinking, chemical crosslinking with
N
-(3-dimethylaminopropyl)-
N′
-ethylcarbodiimide hydrochloride (EDC; 5 mM), and DHT+EDC. DHT crosslinking produced no change in scaffold fiber diameter or interfiber distance and reduced scaffold degradation. Strength was significantly improved by DHT (139.0 ± 34.9 kPa) compared to control but was weaker than EDC or DHT+EDC (222.7 ± 58.4, 353.3 ± 19.0 kPa, respectively). Fourier transform infrared spectroscopy (FTIR) indicated increased amide bond formation with DHT compared to control but a lower amide bond density than EDC or DHT+EDC. After crosslinking, sterilization, and rinsing (a total of 50 h for DHT, 98 h for EDC, and 122 h for DHT+EDC), fibroblasts adhered and proliferated on all scaffolds; however, cell metabolism was 12% less on DHT scaffolds. These data indicate that DHT crosslinking can be utilized to stabilize electrospun collagen scaffolds; however, a tradeoff exists between scaffold stability/strength and rapid processing.</description><identifier>ISSN: 1937-3384</identifier><identifier>EISSN: 1937-3392</identifier><identifier>DOI: 10.1089/ten.tec.2009.0754</identifier><identifier>PMID: 20594112</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Amides - chemistry ; Biocompatible Materials ; Biotechnology ; Carbodiimides - chemistry ; Cell Adhesion ; Cell Proliferation ; Cell Survival ; Chemical bonds ; Chemical engineering ; Collagen ; Collagen - chemistry ; Cross-Linking Reagents - chemistry ; Crosslinked polymers ; Dimethylamines - chemistry ; Efficiency ; Electrochemistry ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Humans ; Materials Testing ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Pressure ; Process engineering ; Skin - pathology ; Spectroscopy, Fourier Transform Infrared ; Tensile Strength ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Tissue engineering. Part C, Methods, 2011-01, Vol.17 (1), p.9-17</ispartof><rights>2011, Mary Ann Liebert, Inc.</rights><rights>COPYRIGHT 2011 Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2011, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-554313752a94345897beea134de0f8b83ae642126fb8e1322c96f19423ca2c63</citedby><cites>FETCH-LOGICAL-c541t-554313752a94345897beea134de0f8b83ae642126fb8e1322c96f19423ca2c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20594112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drexler, Jason W.</creatorcontrib><creatorcontrib>Powell, Heather M.</creatorcontrib><title>Dehydrothermal Crosslinking of Electrospun Collagen</title><title>Tissue engineering. Part C, Methods</title><addtitle>Tissue Eng Part C Methods</addtitle><description>Electrospun collagen scaffolds must be crosslinked to improve stability. Chemical crosslinking methods are often associated with cytotoxicity and can require lengthy rinsing procedures to remove the crosslinker. Physical crosslinking using dehydrothermal (DHT) treatment is utilized to stabilize fibrous collagen sponges; however, little is known regarding the effect of DHT crosslinking on electrospun collagen. To investigate the efficacy of DHT crosslinking, soluble type I collagen was electrospun and exposed to DHT crosslinking, chemical crosslinking with
N
-(3-dimethylaminopropyl)-
N′
-ethylcarbodiimide hydrochloride (EDC; 5 mM), and DHT+EDC. DHT crosslinking produced no change in scaffold fiber diameter or interfiber distance and reduced scaffold degradation. Strength was significantly improved by DHT (139.0 ± 34.9 kPa) compared to control but was weaker than EDC or DHT+EDC (222.7 ± 58.4, 353.3 ± 19.0 kPa, respectively). Fourier transform infrared spectroscopy (FTIR) indicated increased amide bond formation with DHT compared to control but a lower amide bond density than EDC or DHT+EDC. After crosslinking, sterilization, and rinsing (a total of 50 h for DHT, 98 h for EDC, and 122 h for DHT+EDC), fibroblasts adhered and proliferated on all scaffolds; however, cell metabolism was 12% less on DHT scaffolds. These data indicate that DHT crosslinking can be utilized to stabilize electrospun collagen scaffolds; however, a tradeoff exists between scaffold stability/strength and rapid processing.</description><subject>Amides - chemistry</subject><subject>Biocompatible Materials</subject><subject>Biotechnology</subject><subject>Carbodiimides - chemistry</subject><subject>Cell Adhesion</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Chemical bonds</subject><subject>Chemical engineering</subject><subject>Collagen</subject><subject>Collagen - chemistry</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Crosslinked polymers</subject><subject>Dimethylamines - chemistry</subject><subject>Efficiency</subject><subject>Electrochemistry</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Humans</subject><subject>Materials Testing</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Pressure</subject><subject>Process engineering</subject><subject>Skin - pathology</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Tensile Strength</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>1937-3384</issn><issn>1937-3392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtLAzEUhYMovn-AGym60E3HPCfJstT6AMGN-5BJ79TRmaRmZhb992ZoLSgiEkLC5TuHkxyEzgjOCFb6pgOfdeAyirHOsBR8Bx0SzeSYMU13t3fFD9BR275hnONc6n10QLHQnBB6iNgtvK7mMXSvEBtbj6YxtG1d-ffKL0ahHM1qcF2aLXs_moa6tgvwJ2ivtHULp5vzGL3czV6mD-On5_vH6eRp7AQn3VgIzgiTglrNGRdKywLAEsbngEtVKGYh55TQvCwUEEap03lJNKfMWepydoyu1rbLGD56aDvTVK2DlMFD6FujRC4Vw1wn8vpPkuRUYsmFpgm9-IG-hT769AyjKOUiuckEXa6hha3BVL4MXbRu8DQTypWQSushX_YLldYcmsoFD2WV5t8EZC1wwydHKM0yVo2NK0OwGQo1qdC0nRkKNUOhSXO-ydsXDcy3iq8GEyDXwDC23tcVFBC7f1h_AlXLrDY</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Drexler, Jason W.</creator><creator>Powell, Heather M.</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20110101</creationdate><title>Dehydrothermal Crosslinking of Electrospun Collagen</title><author>Drexler, Jason W. ; Powell, Heather M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-554313752a94345897beea134de0f8b83ae642126fb8e1322c96f19423ca2c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amides - chemistry</topic><topic>Biocompatible Materials</topic><topic>Biotechnology</topic><topic>Carbodiimides - chemistry</topic><topic>Cell Adhesion</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Chemical bonds</topic><topic>Chemical engineering</topic><topic>Collagen</topic><topic>Collagen - chemistry</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Crosslinked polymers</topic><topic>Dimethylamines - chemistry</topic><topic>Efficiency</topic><topic>Electrochemistry</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Humans</topic><topic>Materials Testing</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Pressure</topic><topic>Process engineering</topic><topic>Skin - pathology</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Tensile Strength</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drexler, Jason W.</creatorcontrib><creatorcontrib>Powell, Heather M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Tissue engineering. Part C, Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drexler, Jason W.</au><au>Powell, Heather M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dehydrothermal Crosslinking of Electrospun Collagen</atitle><jtitle>Tissue engineering. Part C, Methods</jtitle><addtitle>Tissue Eng Part C Methods</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>17</volume><issue>1</issue><spage>9</spage><epage>17</epage><pages>9-17</pages><issn>1937-3384</issn><eissn>1937-3392</eissn><abstract>Electrospun collagen scaffolds must be crosslinked to improve stability. Chemical crosslinking methods are often associated with cytotoxicity and can require lengthy rinsing procedures to remove the crosslinker. Physical crosslinking using dehydrothermal (DHT) treatment is utilized to stabilize fibrous collagen sponges; however, little is known regarding the effect of DHT crosslinking on electrospun collagen. To investigate the efficacy of DHT crosslinking, soluble type I collagen was electrospun and exposed to DHT crosslinking, chemical crosslinking with
N
-(3-dimethylaminopropyl)-
N′
-ethylcarbodiimide hydrochloride (EDC; 5 mM), and DHT+EDC. DHT crosslinking produced no change in scaffold fiber diameter or interfiber distance and reduced scaffold degradation. Strength was significantly improved by DHT (139.0 ± 34.9 kPa) compared to control but was weaker than EDC or DHT+EDC (222.7 ± 58.4, 353.3 ± 19.0 kPa, respectively). Fourier transform infrared spectroscopy (FTIR) indicated increased amide bond formation with DHT compared to control but a lower amide bond density than EDC or DHT+EDC. After crosslinking, sterilization, and rinsing (a total of 50 h for DHT, 98 h for EDC, and 122 h for DHT+EDC), fibroblasts adhered and proliferated on all scaffolds; however, cell metabolism was 12% less on DHT scaffolds. These data indicate that DHT crosslinking can be utilized to stabilize electrospun collagen scaffolds; however, a tradeoff exists between scaffold stability/strength and rapid processing.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>20594112</pmid><doi>10.1089/ten.tec.2009.0754</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3384 |
ispartof | Tissue engineering. Part C, Methods, 2011-01, Vol.17 (1), p.9-17 |
issn | 1937-3384 1937-3392 |
language | eng |
recordid | cdi_proquest_miscellaneous_856783049 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Amides - chemistry Biocompatible Materials Biotechnology Carbodiimides - chemistry Cell Adhesion Cell Proliferation Cell Survival Chemical bonds Chemical engineering Collagen Collagen - chemistry Cross-Linking Reagents - chemistry Crosslinked polymers Dimethylamines - chemistry Efficiency Electrochemistry Fibroblasts - cytology Fibroblasts - drug effects Fibroblasts - metabolism Humans Materials Testing Microscopy, Electron, Scanning Microscopy, Electron, Transmission Pressure Process engineering Skin - pathology Spectroscopy, Fourier Transform Infrared Tensile Strength Tissue Engineering - methods Tissue Scaffolds |
title | Dehydrothermal Crosslinking of Electrospun Collagen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dehydrothermal%20Crosslinking%20of%20Electrospun%20Collagen&rft.jtitle=Tissue%20engineering.%20Part%20C,%20Methods&rft.au=Drexler,%20Jason%20W.&rft.date=2011-01-01&rft.volume=17&rft.issue=1&rft.spage=9&rft.epage=17&rft.pages=9-17&rft.issn=1937-3384&rft.eissn=1937-3392&rft_id=info:doi/10.1089/ten.tec.2009.0754&rft_dat=%3Cgale_proqu%3EA248578996%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=822454937&rft_id=info:pmid/20594112&rft_galeid=A248578996&rfr_iscdi=true |