Bioconversion of wheat stalk to hydrogen by dark fermentation: Effect of different mixed microflora on hydrogen yield and cellulose solubilisation

This study determined hydrogen production, volatile fatty acids (VFAs) generation and cellulose solubilisation from anaerobic dark fermentation of wheat stalk and showed the effect of different mixed microflora. The cumulative hydrogen yields of anaerobic digested activated sludge (AS)-inoculated an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2011-02, Vol.102 (4), p.3805-3809
Hauptverfasser: Chu, Yongbao, Wei, Yueli, Yuan, Xianzheng, Shi, Xiaoshuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3809
container_issue 4
container_start_page 3805
container_title Bioresource technology
container_volume 102
creator Chu, Yongbao
Wei, Yueli
Yuan, Xianzheng
Shi, Xiaoshuang
description This study determined hydrogen production, volatile fatty acids (VFAs) generation and cellulose solubilisation from anaerobic dark fermentation of wheat stalk and showed the effect of different mixed microflora. The cumulative hydrogen yields of anaerobic digested activated sludge (AS)-inoculated and anaerobic digested dairy manure (DM)-inoculated system were 23.3 and 37.0mL/g VS at 204h, respectively. A modified Gompertz equation was able to adequately describe the production of hydrogen from the batch fermentation by both mixed microflora. During the process, acetate and butyrate accounted for more than 76.1% of total VFAs for both fermentations. The extent of cellulose solubilisation approached 46.6% and 75.2% for AS- and DM-inoculated fermentation, respectively. The X-ray diffraction (XRD) showed that the crystallinities of both fermented stalks were partly disrupted by the mixed microflora, and DM-inoculated fermentation had more disruption than AS-inoculated one.
doi_str_mv 10.1016/j.biortech.2010.11.092
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_856781061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096085241001895X</els_id><sourcerecordid>846900616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-39169a38a82e3f0eb4cc93291c6e9b224702f07b3df696afdc91ad8c0a978f693</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxiMEokvhFYovCC5ZPHbi2JwKVfkjVeIAPVuOPe56m42LnS3sa_DEOOy23OjFtsa_-ebTfFV1AnQJFMTb9bIPMU1oV0tG5yIsqWKPqgXIjtdMdeJxtaBK0Fq2rDmqnuW8ppRy6NjT6ogBdB1Qtqh-fwjRxvEWUw5xJNGTnys0E8mTGa7JFMlq51K8wpH0O-JMuiYe0wbHyUyFf0fOvUc7zX0ulGcqP2QTfqErp03RDzEZUoTvZXYBB0fM6IjFYdgOMSPJcdj2YQj5r-jz6ok3Q8YXh_u4uvx4_v3sc33x9dOXs_cXtW1bNtVcgVCGSyMZck-xb6xVnCmwAlXPWNNR5mnXc-eFEsY7q8A4aalRnSwlfly93uvepPhji3nSm5BnU2bEuM1atqKTQAU8TDZC0QKKQr75Lwmig2KthbagYo-WNeWc0OubFDYm7TRQPWes1_ouYz1nrAF0ybg0nhxmbPsNuvu2u1AL8OoAmGzN4JMZbcj_OC6ZFHI2-3LPeRO1uUqFufxWJnEKirdNO6_odE9gyeE2YNLZBhwtupBK7NrF8JDbP3s50_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671224515</pqid></control><display><type>article</type><title>Bioconversion of wheat stalk to hydrogen by dark fermentation: Effect of different mixed microflora on hydrogen yield and cellulose solubilisation</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chu, Yongbao ; Wei, Yueli ; Yuan, Xianzheng ; Shi, Xiaoshuang</creator><creatorcontrib>Chu, Yongbao ; Wei, Yueli ; Yuan, Xianzheng ; Shi, Xiaoshuang</creatorcontrib><description>This study determined hydrogen production, volatile fatty acids (VFAs) generation and cellulose solubilisation from anaerobic dark fermentation of wheat stalk and showed the effect of different mixed microflora. The cumulative hydrogen yields of anaerobic digested activated sludge (AS)-inoculated and anaerobic digested dairy manure (DM)-inoculated system were 23.3 and 37.0mL/g VS at 204h, respectively. A modified Gompertz equation was able to adequately describe the production of hydrogen from the batch fermentation by both mixed microflora. During the process, acetate and butyrate accounted for more than 76.1% of total VFAs for both fermentations. The extent of cellulose solubilisation approached 46.6% and 75.2% for AS- and DM-inoculated fermentation, respectively. The X-ray diffraction (XRD) showed that the crystallinities of both fermented stalks were partly disrupted by the mixed microflora, and DM-inoculated fermentation had more disruption than AS-inoculated one.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2010.11.092</identifier><identifier>PMID: 21177102</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alcohols - chemistry ; Anaerobic dark fermentation ; Anaerobiosis ; Bioconversions. Hemisynthesis ; Biodegradation, Environmental ; Biofuel production ; Biohydrogen production ; Biological and medical sciences ; Biotechnology ; Biotechnology - methods ; Cellulose ; Cellulose - chemistry ; Cellulose solubilisation ; Crystal structure ; Diffraction ; Energy ; Fatty acids ; Fatty Acids, Volatile - chemistry ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Hydrogen - chemistry ; Hydrogen storage ; Industrial applications and implications. Economical aspects ; Mathematical analysis ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Polymers - chemistry ; Sewage ; Solubility ; Time Factors ; Triticum - metabolism ; Triticum aestivum ; Wheat ; Wheat stalk ; X-Ray Diffraction ; X-rays</subject><ispartof>Bioresource technology, 2011-02, Vol.102 (4), p.3805-3809</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-39169a38a82e3f0eb4cc93291c6e9b224702f07b3df696afdc91ad8c0a978f693</citedby><cites>FETCH-LOGICAL-c552t-39169a38a82e3f0eb4cc93291c6e9b224702f07b3df696afdc91ad8c0a978f693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2010.11.092$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23828686$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21177102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Yongbao</creatorcontrib><creatorcontrib>Wei, Yueli</creatorcontrib><creatorcontrib>Yuan, Xianzheng</creatorcontrib><creatorcontrib>Shi, Xiaoshuang</creatorcontrib><title>Bioconversion of wheat stalk to hydrogen by dark fermentation: Effect of different mixed microflora on hydrogen yield and cellulose solubilisation</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>This study determined hydrogen production, volatile fatty acids (VFAs) generation and cellulose solubilisation from anaerobic dark fermentation of wheat stalk and showed the effect of different mixed microflora. The cumulative hydrogen yields of anaerobic digested activated sludge (AS)-inoculated and anaerobic digested dairy manure (DM)-inoculated system were 23.3 and 37.0mL/g VS at 204h, respectively. A modified Gompertz equation was able to adequately describe the production of hydrogen from the batch fermentation by both mixed microflora. During the process, acetate and butyrate accounted for more than 76.1% of total VFAs for both fermentations. The extent of cellulose solubilisation approached 46.6% and 75.2% for AS- and DM-inoculated fermentation, respectively. The X-ray diffraction (XRD) showed that the crystallinities of both fermented stalks were partly disrupted by the mixed microflora, and DM-inoculated fermentation had more disruption than AS-inoculated one.</description><subject>Alcohols - chemistry</subject><subject>Anaerobic dark fermentation</subject><subject>Anaerobiosis</subject><subject>Bioconversions. Hemisynthesis</subject><subject>Biodegradation, Environmental</subject><subject>Biofuel production</subject><subject>Biohydrogen production</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>Cellulose</subject><subject>Cellulose - chemistry</subject><subject>Cellulose solubilisation</subject><subject>Crystal structure</subject><subject>Diffraction</subject><subject>Energy</subject><subject>Fatty acids</subject><subject>Fatty Acids, Volatile - chemistry</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen storage</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Mathematical analysis</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Polymers - chemistry</subject><subject>Sewage</subject><subject>Solubility</subject><subject>Time Factors</subject><subject>Triticum - metabolism</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><subject>Wheat stalk</subject><subject>X-Ray Diffraction</subject><subject>X-rays</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxiMEokvhFYovCC5ZPHbi2JwKVfkjVeIAPVuOPe56m42LnS3sa_DEOOy23OjFtsa_-ebTfFV1AnQJFMTb9bIPMU1oV0tG5yIsqWKPqgXIjtdMdeJxtaBK0Fq2rDmqnuW8ppRy6NjT6ogBdB1Qtqh-fwjRxvEWUw5xJNGTnys0E8mTGa7JFMlq51K8wpH0O-JMuiYe0wbHyUyFf0fOvUc7zX0ulGcqP2QTfqErp03RDzEZUoTvZXYBB0fM6IjFYdgOMSPJcdj2YQj5r-jz6ok3Q8YXh_u4uvx4_v3sc33x9dOXs_cXtW1bNtVcgVCGSyMZck-xb6xVnCmwAlXPWNNR5mnXc-eFEsY7q8A4aalRnSwlfly93uvepPhji3nSm5BnU2bEuM1atqKTQAU8TDZC0QKKQr75Lwmig2KthbagYo-WNeWc0OubFDYm7TRQPWes1_ouYz1nrAF0ybg0nhxmbPsNuvu2u1AL8OoAmGzN4JMZbcj_OC6ZFHI2-3LPeRO1uUqFufxWJnEKirdNO6_odE9gyeE2YNLZBhwtupBK7NrF8JDbP3s50_s</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Chu, Yongbao</creator><creator>Wei, Yueli</creator><creator>Yuan, Xianzheng</creator><creator>Shi, Xiaoshuang</creator><general>Elsevier Ltd</general><general>[New York, NY]: Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20110201</creationdate><title>Bioconversion of wheat stalk to hydrogen by dark fermentation: Effect of different mixed microflora on hydrogen yield and cellulose solubilisation</title><author>Chu, Yongbao ; Wei, Yueli ; Yuan, Xianzheng ; Shi, Xiaoshuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-39169a38a82e3f0eb4cc93291c6e9b224702f07b3df696afdc91ad8c0a978f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alcohols - chemistry</topic><topic>Anaerobic dark fermentation</topic><topic>Anaerobiosis</topic><topic>Bioconversions. Hemisynthesis</topic><topic>Biodegradation, Environmental</topic><topic>Biofuel production</topic><topic>Biohydrogen production</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>Cellulose</topic><topic>Cellulose - chemistry</topic><topic>Cellulose solubilisation</topic><topic>Crystal structure</topic><topic>Diffraction</topic><topic>Energy</topic><topic>Fatty acids</topic><topic>Fatty Acids, Volatile - chemistry</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen storage</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Mathematical analysis</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Polymers - chemistry</topic><topic>Sewage</topic><topic>Solubility</topic><topic>Time Factors</topic><topic>Triticum - metabolism</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><topic>Wheat stalk</topic><topic>X-Ray Diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Yongbao</creatorcontrib><creatorcontrib>Wei, Yueli</creatorcontrib><creatorcontrib>Yuan, Xianzheng</creatorcontrib><creatorcontrib>Shi, Xiaoshuang</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Yongbao</au><au>Wei, Yueli</au><au>Yuan, Xianzheng</au><au>Shi, Xiaoshuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioconversion of wheat stalk to hydrogen by dark fermentation: Effect of different mixed microflora on hydrogen yield and cellulose solubilisation</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>102</volume><issue>4</issue><spage>3805</spage><epage>3809</epage><pages>3805-3809</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>This study determined hydrogen production, volatile fatty acids (VFAs) generation and cellulose solubilisation from anaerobic dark fermentation of wheat stalk and showed the effect of different mixed microflora. The cumulative hydrogen yields of anaerobic digested activated sludge (AS)-inoculated and anaerobic digested dairy manure (DM)-inoculated system were 23.3 and 37.0mL/g VS at 204h, respectively. A modified Gompertz equation was able to adequately describe the production of hydrogen from the batch fermentation by both mixed microflora. During the process, acetate and butyrate accounted for more than 76.1% of total VFAs for both fermentations. The extent of cellulose solubilisation approached 46.6% and 75.2% for AS- and DM-inoculated fermentation, respectively. The X-ray diffraction (XRD) showed that the crystallinities of both fermented stalks were partly disrupted by the mixed microflora, and DM-inoculated fermentation had more disruption than AS-inoculated one.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21177102</pmid><doi>10.1016/j.biortech.2010.11.092</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2011-02, Vol.102 (4), p.3805-3809
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_856781061
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Alcohols - chemistry
Anaerobic dark fermentation
Anaerobiosis
Bioconversions. Hemisynthesis
Biodegradation, Environmental
Biofuel production
Biohydrogen production
Biological and medical sciences
Biotechnology
Biotechnology - methods
Cellulose
Cellulose - chemistry
Cellulose solubilisation
Crystal structure
Diffraction
Energy
Fatty acids
Fatty Acids, Volatile - chemistry
Fermentation
Fundamental and applied biological sciences. Psychology
Hydrogen - chemistry
Hydrogen storage
Industrial applications and implications. Economical aspects
Mathematical analysis
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Polymers - chemistry
Sewage
Solubility
Time Factors
Triticum - metabolism
Triticum aestivum
Wheat
Wheat stalk
X-Ray Diffraction
X-rays
title Bioconversion of wheat stalk to hydrogen by dark fermentation: Effect of different mixed microflora on hydrogen yield and cellulose solubilisation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioconversion%20of%20wheat%20stalk%20to%20hydrogen%20by%20dark%20fermentation:%20Effect%20of%20different%20mixed%20microflora%20on%20hydrogen%20yield%20and%20cellulose%20solubilisation&rft.jtitle=Bioresource%20technology&rft.au=Chu,%20Yongbao&rft.date=2011-02-01&rft.volume=102&rft.issue=4&rft.spage=3805&rft.epage=3809&rft.pages=3805-3809&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2010.11.092&rft_dat=%3Cproquest_cross%3E846900616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671224515&rft_id=info:pmid/21177102&rft_els_id=S096085241001895X&rfr_iscdi=true