Bioconversion of wheat stalk to hydrogen by dark fermentation: Effect of different mixed microflora on hydrogen yield and cellulose solubilisation
This study determined hydrogen production, volatile fatty acids (VFAs) generation and cellulose solubilisation from anaerobic dark fermentation of wheat stalk and showed the effect of different mixed microflora. The cumulative hydrogen yields of anaerobic digested activated sludge (AS)-inoculated an...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2011-02, Vol.102 (4), p.3805-3809 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3809 |
---|---|
container_issue | 4 |
container_start_page | 3805 |
container_title | Bioresource technology |
container_volume | 102 |
creator | Chu, Yongbao Wei, Yueli Yuan, Xianzheng Shi, Xiaoshuang |
description | This study determined hydrogen production, volatile fatty acids (VFAs) generation and cellulose solubilisation from anaerobic dark fermentation of wheat stalk and showed the effect of different mixed microflora. The cumulative hydrogen yields of anaerobic digested activated sludge (AS)-inoculated and anaerobic digested dairy manure (DM)-inoculated system were 23.3 and 37.0mL/g VS at 204h, respectively. A modified Gompertz equation was able to adequately describe the production of hydrogen from the batch fermentation by both mixed microflora. During the process, acetate and butyrate accounted for more than 76.1% of total VFAs for both fermentations. The extent of cellulose solubilisation approached 46.6% and 75.2% for AS- and DM-inoculated fermentation, respectively. The X-ray diffraction (XRD) showed that the crystallinities of both fermented stalks were partly disrupted by the mixed microflora, and DM-inoculated fermentation had more disruption than AS-inoculated one. |
doi_str_mv | 10.1016/j.biortech.2010.11.092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_856781061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096085241001895X</els_id><sourcerecordid>846900616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-39169a38a82e3f0eb4cc93291c6e9b224702f07b3df696afdc91ad8c0a978f693</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxiMEokvhFYovCC5ZPHbi2JwKVfkjVeIAPVuOPe56m42LnS3sa_DEOOy23OjFtsa_-ebTfFV1AnQJFMTb9bIPMU1oV0tG5yIsqWKPqgXIjtdMdeJxtaBK0Fq2rDmqnuW8ppRy6NjT6ogBdB1Qtqh-fwjRxvEWUw5xJNGTnys0E8mTGa7JFMlq51K8wpH0O-JMuiYe0wbHyUyFf0fOvUc7zX0ulGcqP2QTfqErp03RDzEZUoTvZXYBB0fM6IjFYdgOMSPJcdj2YQj5r-jz6ok3Q8YXh_u4uvx4_v3sc33x9dOXs_cXtW1bNtVcgVCGSyMZck-xb6xVnCmwAlXPWNNR5mnXc-eFEsY7q8A4aalRnSwlfly93uvepPhji3nSm5BnU2bEuM1atqKTQAU8TDZC0QKKQr75Lwmig2KthbagYo-WNeWc0OubFDYm7TRQPWes1_ouYz1nrAF0ybg0nhxmbPsNuvu2u1AL8OoAmGzN4JMZbcj_OC6ZFHI2-3LPeRO1uUqFufxWJnEKirdNO6_odE9gyeE2YNLZBhwtupBK7NrF8JDbP3s50_s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671224515</pqid></control><display><type>article</type><title>Bioconversion of wheat stalk to hydrogen by dark fermentation: Effect of different mixed microflora on hydrogen yield and cellulose solubilisation</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chu, Yongbao ; Wei, Yueli ; Yuan, Xianzheng ; Shi, Xiaoshuang</creator><creatorcontrib>Chu, Yongbao ; Wei, Yueli ; Yuan, Xianzheng ; Shi, Xiaoshuang</creatorcontrib><description>This study determined hydrogen production, volatile fatty acids (VFAs) generation and cellulose solubilisation from anaerobic dark fermentation of wheat stalk and showed the effect of different mixed microflora. The cumulative hydrogen yields of anaerobic digested activated sludge (AS)-inoculated and anaerobic digested dairy manure (DM)-inoculated system were 23.3 and 37.0mL/g VS at 204h, respectively. A modified Gompertz equation was able to adequately describe the production of hydrogen from the batch fermentation by both mixed microflora. During the process, acetate and butyrate accounted for more than 76.1% of total VFAs for both fermentations. The extent of cellulose solubilisation approached 46.6% and 75.2% for AS- and DM-inoculated fermentation, respectively. The X-ray diffraction (XRD) showed that the crystallinities of both fermented stalks were partly disrupted by the mixed microflora, and DM-inoculated fermentation had more disruption than AS-inoculated one.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2010.11.092</identifier><identifier>PMID: 21177102</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alcohols - chemistry ; Anaerobic dark fermentation ; Anaerobiosis ; Bioconversions. Hemisynthesis ; Biodegradation, Environmental ; Biofuel production ; Biohydrogen production ; Biological and medical sciences ; Biotechnology ; Biotechnology - methods ; Cellulose ; Cellulose - chemistry ; Cellulose solubilisation ; Crystal structure ; Diffraction ; Energy ; Fatty acids ; Fatty Acids, Volatile - chemistry ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Hydrogen - chemistry ; Hydrogen storage ; Industrial applications and implications. Economical aspects ; Mathematical analysis ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Polymers - chemistry ; Sewage ; Solubility ; Time Factors ; Triticum - metabolism ; Triticum aestivum ; Wheat ; Wheat stalk ; X-Ray Diffraction ; X-rays</subject><ispartof>Bioresource technology, 2011-02, Vol.102 (4), p.3805-3809</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-39169a38a82e3f0eb4cc93291c6e9b224702f07b3df696afdc91ad8c0a978f693</citedby><cites>FETCH-LOGICAL-c552t-39169a38a82e3f0eb4cc93291c6e9b224702f07b3df696afdc91ad8c0a978f693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2010.11.092$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23828686$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21177102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chu, Yongbao</creatorcontrib><creatorcontrib>Wei, Yueli</creatorcontrib><creatorcontrib>Yuan, Xianzheng</creatorcontrib><creatorcontrib>Shi, Xiaoshuang</creatorcontrib><title>Bioconversion of wheat stalk to hydrogen by dark fermentation: Effect of different mixed microflora on hydrogen yield and cellulose solubilisation</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>This study determined hydrogen production, volatile fatty acids (VFAs) generation and cellulose solubilisation from anaerobic dark fermentation of wheat stalk and showed the effect of different mixed microflora. The cumulative hydrogen yields of anaerobic digested activated sludge (AS)-inoculated and anaerobic digested dairy manure (DM)-inoculated system were 23.3 and 37.0mL/g VS at 204h, respectively. A modified Gompertz equation was able to adequately describe the production of hydrogen from the batch fermentation by both mixed microflora. During the process, acetate and butyrate accounted for more than 76.1% of total VFAs for both fermentations. The extent of cellulose solubilisation approached 46.6% and 75.2% for AS- and DM-inoculated fermentation, respectively. The X-ray diffraction (XRD) showed that the crystallinities of both fermented stalks were partly disrupted by the mixed microflora, and DM-inoculated fermentation had more disruption than AS-inoculated one.</description><subject>Alcohols - chemistry</subject><subject>Anaerobic dark fermentation</subject><subject>Anaerobiosis</subject><subject>Bioconversions. Hemisynthesis</subject><subject>Biodegradation, Environmental</subject><subject>Biofuel production</subject><subject>Biohydrogen production</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Biotechnology - methods</subject><subject>Cellulose</subject><subject>Cellulose - chemistry</subject><subject>Cellulose solubilisation</subject><subject>Crystal structure</subject><subject>Diffraction</subject><subject>Energy</subject><subject>Fatty acids</subject><subject>Fatty Acids, Volatile - chemistry</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen storage</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Mathematical analysis</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Polymers - chemistry</subject><subject>Sewage</subject><subject>Solubility</subject><subject>Time Factors</subject><subject>Triticum - metabolism</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><subject>Wheat stalk</subject><subject>X-Ray Diffraction</subject><subject>X-rays</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQxiMEokvhFYovCC5ZPHbi2JwKVfkjVeIAPVuOPe56m42LnS3sa_DEOOy23OjFtsa_-ebTfFV1AnQJFMTb9bIPMU1oV0tG5yIsqWKPqgXIjtdMdeJxtaBK0Fq2rDmqnuW8ppRy6NjT6ogBdB1Qtqh-fwjRxvEWUw5xJNGTnys0E8mTGa7JFMlq51K8wpH0O-JMuiYe0wbHyUyFf0fOvUc7zX0ulGcqP2QTfqErp03RDzEZUoTvZXYBB0fM6IjFYdgOMSPJcdj2YQj5r-jz6ok3Q8YXh_u4uvx4_v3sc33x9dOXs_cXtW1bNtVcgVCGSyMZck-xb6xVnCmwAlXPWNNR5mnXc-eFEsY7q8A4aalRnSwlfly93uvepPhji3nSm5BnU2bEuM1atqKTQAU8TDZC0QKKQr75Lwmig2KthbagYo-WNeWc0OubFDYm7TRQPWes1_ouYz1nrAF0ybg0nhxmbPsNuvu2u1AL8OoAmGzN4JMZbcj_OC6ZFHI2-3LPeRO1uUqFufxWJnEKirdNO6_odE9gyeE2YNLZBhwtupBK7NrF8JDbP3s50_s</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Chu, Yongbao</creator><creator>Wei, Yueli</creator><creator>Yuan, Xianzheng</creator><creator>Shi, Xiaoshuang</creator><general>Elsevier Ltd</general><general>[New York, NY]: Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20110201</creationdate><title>Bioconversion of wheat stalk to hydrogen by dark fermentation: Effect of different mixed microflora on hydrogen yield and cellulose solubilisation</title><author>Chu, Yongbao ; Wei, Yueli ; Yuan, Xianzheng ; Shi, Xiaoshuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-39169a38a82e3f0eb4cc93291c6e9b224702f07b3df696afdc91ad8c0a978f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alcohols - chemistry</topic><topic>Anaerobic dark fermentation</topic><topic>Anaerobiosis</topic><topic>Bioconversions. Hemisynthesis</topic><topic>Biodegradation, Environmental</topic><topic>Biofuel production</topic><topic>Biohydrogen production</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Biotechnology - methods</topic><topic>Cellulose</topic><topic>Cellulose - chemistry</topic><topic>Cellulose solubilisation</topic><topic>Crystal structure</topic><topic>Diffraction</topic><topic>Energy</topic><topic>Fatty acids</topic><topic>Fatty Acids, Volatile - chemistry</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen storage</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Mathematical analysis</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Polymers - chemistry</topic><topic>Sewage</topic><topic>Solubility</topic><topic>Time Factors</topic><topic>Triticum - metabolism</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><topic>Wheat stalk</topic><topic>X-Ray Diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Yongbao</creatorcontrib><creatorcontrib>Wei, Yueli</creatorcontrib><creatorcontrib>Yuan, Xianzheng</creatorcontrib><creatorcontrib>Shi, Xiaoshuang</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Yongbao</au><au>Wei, Yueli</au><au>Yuan, Xianzheng</au><au>Shi, Xiaoshuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioconversion of wheat stalk to hydrogen by dark fermentation: Effect of different mixed microflora on hydrogen yield and cellulose solubilisation</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>102</volume><issue>4</issue><spage>3805</spage><epage>3809</epage><pages>3805-3809</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>This study determined hydrogen production, volatile fatty acids (VFAs) generation and cellulose solubilisation from anaerobic dark fermentation of wheat stalk and showed the effect of different mixed microflora. The cumulative hydrogen yields of anaerobic digested activated sludge (AS)-inoculated and anaerobic digested dairy manure (DM)-inoculated system were 23.3 and 37.0mL/g VS at 204h, respectively. A modified Gompertz equation was able to adequately describe the production of hydrogen from the batch fermentation by both mixed microflora. During the process, acetate and butyrate accounted for more than 76.1% of total VFAs for both fermentations. The extent of cellulose solubilisation approached 46.6% and 75.2% for AS- and DM-inoculated fermentation, respectively. The X-ray diffraction (XRD) showed that the crystallinities of both fermented stalks were partly disrupted by the mixed microflora, and DM-inoculated fermentation had more disruption than AS-inoculated one.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>21177102</pmid><doi>10.1016/j.biortech.2010.11.092</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2011-02, Vol.102 (4), p.3805-3809 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_856781061 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Alcohols - chemistry Anaerobic dark fermentation Anaerobiosis Bioconversions. Hemisynthesis Biodegradation, Environmental Biofuel production Biohydrogen production Biological and medical sciences Biotechnology Biotechnology - methods Cellulose Cellulose - chemistry Cellulose solubilisation Crystal structure Diffraction Energy Fatty acids Fatty Acids, Volatile - chemistry Fermentation Fundamental and applied biological sciences. Psychology Hydrogen - chemistry Hydrogen storage Industrial applications and implications. Economical aspects Mathematical analysis Methods. Procedures. Technologies Microbial engineering. Fermentation and microbial culture technology Polymers - chemistry Sewage Solubility Time Factors Triticum - metabolism Triticum aestivum Wheat Wheat stalk X-Ray Diffraction X-rays |
title | Bioconversion of wheat stalk to hydrogen by dark fermentation: Effect of different mixed microflora on hydrogen yield and cellulose solubilisation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioconversion%20of%20wheat%20stalk%20to%20hydrogen%20by%20dark%20fermentation:%20Effect%20of%20different%20mixed%20microflora%20on%20hydrogen%20yield%20and%20cellulose%20solubilisation&rft.jtitle=Bioresource%20technology&rft.au=Chu,%20Yongbao&rft.date=2011-02-01&rft.volume=102&rft.issue=4&rft.spage=3805&rft.epage=3809&rft.pages=3805-3809&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2010.11.092&rft_dat=%3Cproquest_cross%3E846900616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671224515&rft_id=info:pmid/21177102&rft_els_id=S096085241001895X&rfr_iscdi=true |