Arabidopsis LSD1 gene plays an important role in the regulation of low temperature-dependent cell death
In higher plants, the crosstalk between cold stress responses and reactive oxygen species (ROS) signaling is not well understood. Two chilling- sensitive mutants, chs4-1 and chs4-3, were characterized genetically and molecularly. The CHS4 gene, identified by map-based cloning, was found to be identi...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2010-07, Vol.187 (2), p.301-312 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 312 |
---|---|
container_issue | 2 |
container_start_page | 301 |
container_title | The New phytologist |
container_volume | 187 |
creator | Huang, Xiaozhen Li, Yansha Zhang, Xiaoyan Zuo, Jianru Yang, Shuhua |
description | In higher plants, the crosstalk between cold stress responses and reactive oxygen species (ROS) signaling is not well understood. Two chilling- sensitive mutants, chs4-1 and chs4-3, were characterized genetically and molecularly. The CHS4 gene, identified by map-based cloning, was found to be identical to LESION SIMULATING DISEASE RESISTANCE 1 (LSD1). We therefore renamed these two alleles lsd1-3 and lsd1-4, respectively. These two mutants exhibited an extensive cell death phenotype under cold stress conditions. Consistently, lsd1-3 plants exposed to cold showed up-regulation of the PR1 and PR2 genes, and increased accumulation of salicylic acid. These results indicate that low temperature is another trigger of cell death in lsd1 mutants. Furthermore, lsd1-3 plants accumulated higher concentrations of H₂O₂ and total glutathione under cold conditions than wild-type plants. Genetic analysis revealed that PAD4 and EDS1, two key signaling regulators mediating resistance responses, are required for the chilling-sensitive phenotype of lsd1-3. These findings reveal a role of LSD1 in regulating cell death trigged by cold stress and a link between cold stress responses and ROS-associated signaling. |
doi_str_mv | 10.1111/j.1469-8137.2010.03275.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856779088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40792379</jstor_id><sourcerecordid>40792379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6225-b817ee56ac50b7b706f0e79f428c9d2b3e88d469d1468226f15da569c9fb22513</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EokPhJwCWWLDK4Ef8WrCoCrRII0AqldhZTnIzTZTEwU7Uzr_Hacos2BRvbPme79x7dRDClGxpOh_aLc2lyTTlastI-iWcKbG9e4I2x8JTtCGE6Uzm8tcJehFjSwgxQrLn6ISRXEiSmw3anwVXNJUfYxPx7uoTxXsYAI-dO0TsBtz0ow-TGyYcfAe4GfB0AzjAfu7c1PgB-xp3_hZP0I8Q3DQHyCoYYaggMSV0Ha7ATTcv0bPadRFePdyn6PrL55_nl9nu-8XX87NdVkrGRFZoqgCEdKUghSoUkTUBZeqc6dJUrOCgdZU2rNKamjFZU1E5IU1p6iLxlJ-i96vvGPzvGeJk-yYuY7gB_BytFlIpQ7R-VKlyoThj-nFPxbkx0og8Kd_9o2z9HIa0sE3DJTPGKEsqvarK4GMMUNsxNL0LB0uJXfK1rV1itEuMdsnX3udr7xL65qHBXPRQHcG_gSbBx1Vw23Rw-G9j--3H5fJK_OuVb-Pkw5HPiTKMq8X_7VqvnbduH5por6-SEydUCy2M5n8Al-nFDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512282212</pqid></control><display><type>article</type><title>Arabidopsis LSD1 gene plays an important role in the regulation of low temperature-dependent cell death</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library All Journals</source><creator>Huang, Xiaozhen ; Li, Yansha ; Zhang, Xiaoyan ; Zuo, Jianru ; Yang, Shuhua</creator><creatorcontrib>Huang, Xiaozhen ; Li, Yansha ; Zhang, Xiaoyan ; Zuo, Jianru ; Yang, Shuhua</creatorcontrib><description>In higher plants, the crosstalk between cold stress responses and reactive oxygen species (ROS) signaling is not well understood. Two chilling- sensitive mutants, chs4-1 and chs4-3, were characterized genetically and molecularly. The CHS4 gene, identified by map-based cloning, was found to be identical to LESION SIMULATING DISEASE RESISTANCE 1 (LSD1). We therefore renamed these two alleles lsd1-3 and lsd1-4, respectively. These two mutants exhibited an extensive cell death phenotype under cold stress conditions. Consistently, lsd1-3 plants exposed to cold showed up-regulation of the PR1 and PR2 genes, and increased accumulation of salicylic acid. These results indicate that low temperature is another trigger of cell death in lsd1 mutants. Furthermore, lsd1-3 plants accumulated higher concentrations of H₂O₂ and total glutathione under cold conditions than wild-type plants. Genetic analysis revealed that PAD4 and EDS1, two key signaling regulators mediating resistance responses, are required for the chilling-sensitive phenotype of lsd1-3. These findings reveal a role of LSD1 in regulating cell death trigged by cold stress and a link between cold stress responses and ROS-associated signaling.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2010.03275.x</identifier><identifier>PMID: 20456049</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Alleles ; Apoptosis ; Arabidopsis ; Arabidopsis - cytology ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Cell death ; Cell Death - genetics ; Cell Membrane - metabolism ; Cellular stress response ; Chilling ; CHS4 gene ; Cloning ; Cloning, Molecular ; Cold ; Cold Temperature ; Cooling ; Crosstalk ; Disease resistance ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Gene expression regulation ; Gene Expression Regulation, Plant ; Genes ; Genes, Plant - genetics ; Genetic analysis ; Genetic mutation ; Glutathione ; Glutathione - metabolism ; Hydrogen peroxide ; Indexing in process ; Lesions ; Low temperature ; LSD1 ; Mortality ; Mutants ; Mutation - genetics ; Oxidative stress ; Phenotype ; Phenotypes ; Plant cells ; Plants ; Reactive oxygen species ; reactive oxygen species (ROS) ; Reactive Oxygen Species - metabolism ; Regulators ; Salicylic acid ; Signaling ; Stress, Physiological - genetics ; Temperature dependence ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>The New phytologist, 2010-07, Vol.187 (2), p.301-312</ispartof><rights>2010 New Phytologist Trust</rights><rights>The Authors (2010). Journal compilation © New Phytologist Trust (2010)</rights><rights>Copyright Wiley Subscription Services, Inc. Jul 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6225-b817ee56ac50b7b706f0e79f428c9d2b3e88d469d1468226f15da569c9fb22513</citedby><cites>FETCH-LOGICAL-c6225-b817ee56ac50b7b706f0e79f428c9d2b3e88d469d1468226f15da569c9fb22513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40792379$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40792379$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1416,1432,27923,27924,45573,45574,46408,46832,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20456049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Xiaozhen</creatorcontrib><creatorcontrib>Li, Yansha</creatorcontrib><creatorcontrib>Zhang, Xiaoyan</creatorcontrib><creatorcontrib>Zuo, Jianru</creatorcontrib><creatorcontrib>Yang, Shuhua</creatorcontrib><title>Arabidopsis LSD1 gene plays an important role in the regulation of low temperature-dependent cell death</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>In higher plants, the crosstalk between cold stress responses and reactive oxygen species (ROS) signaling is not well understood. Two chilling- sensitive mutants, chs4-1 and chs4-3, were characterized genetically and molecularly. The CHS4 gene, identified by map-based cloning, was found to be identical to LESION SIMULATING DISEASE RESISTANCE 1 (LSD1). We therefore renamed these two alleles lsd1-3 and lsd1-4, respectively. These two mutants exhibited an extensive cell death phenotype under cold stress conditions. Consistently, lsd1-3 plants exposed to cold showed up-regulation of the PR1 and PR2 genes, and increased accumulation of salicylic acid. These results indicate that low temperature is another trigger of cell death in lsd1 mutants. Furthermore, lsd1-3 plants accumulated higher concentrations of H₂O₂ and total glutathione under cold conditions than wild-type plants. Genetic analysis revealed that PAD4 and EDS1, two key signaling regulators mediating resistance responses, are required for the chilling-sensitive phenotype of lsd1-3. These findings reveal a role of LSD1 in regulating cell death trigged by cold stress and a link between cold stress responses and ROS-associated signaling.</description><subject>Alleles</subject><subject>Apoptosis</subject><subject>Arabidopsis</subject><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Cell death</subject><subject>Cell Death - genetics</subject><subject>Cell Membrane - metabolism</subject><subject>Cellular stress response</subject><subject>Chilling</subject><subject>CHS4 gene</subject><subject>Cloning</subject><subject>Cloning, Molecular</subject><subject>Cold</subject><subject>Cold Temperature</subject><subject>Cooling</subject><subject>Crosstalk</subject><subject>Disease resistance</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>Genetic analysis</subject><subject>Genetic mutation</subject><subject>Glutathione</subject><subject>Glutathione - metabolism</subject><subject>Hydrogen peroxide</subject><subject>Indexing in process</subject><subject>Lesions</subject><subject>Low temperature</subject><subject>LSD1</subject><subject>Mortality</subject><subject>Mutants</subject><subject>Mutation - genetics</subject><subject>Oxidative stress</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Plant cells</subject><subject>Plants</subject><subject>Reactive oxygen species</subject><subject>reactive oxygen species (ROS)</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Regulators</subject><subject>Salicylic acid</subject><subject>Signaling</subject><subject>Stress, Physiological - genetics</subject><subject>Temperature dependence</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAUhS0EokPhJwCWWLDK4Ef8WrCoCrRII0AqldhZTnIzTZTEwU7Uzr_Hacos2BRvbPme79x7dRDClGxpOh_aLc2lyTTlastI-iWcKbG9e4I2x8JTtCGE6Uzm8tcJehFjSwgxQrLn6ISRXEiSmw3anwVXNJUfYxPx7uoTxXsYAI-dO0TsBtz0ow-TGyYcfAe4GfB0AzjAfu7c1PgB-xp3_hZP0I8Q3DQHyCoYYaggMSV0Ha7ATTcv0bPadRFePdyn6PrL55_nl9nu-8XX87NdVkrGRFZoqgCEdKUghSoUkTUBZeqc6dJUrOCgdZU2rNKamjFZU1E5IU1p6iLxlJ-i96vvGPzvGeJk-yYuY7gB_BytFlIpQ7R-VKlyoThj-nFPxbkx0og8Kd_9o2z9HIa0sE3DJTPGKEsqvarK4GMMUNsxNL0LB0uJXfK1rV1itEuMdsnX3udr7xL65qHBXPRQHcG_gSbBx1Vw23Rw-G9j--3H5fJK_OuVb-Pkw5HPiTKMq8X_7VqvnbduH5por6-SEydUCy2M5n8Al-nFDg</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Huang, Xiaozhen</creator><creator>Li, Yansha</creator><creator>Zhang, Xiaoyan</creator><creator>Zuo, Jianru</creator><creator>Yang, Shuhua</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201007</creationdate><title>Arabidopsis LSD1 gene plays an important role in the regulation of low temperature-dependent cell death</title><author>Huang, Xiaozhen ; Li, Yansha ; Zhang, Xiaoyan ; Zuo, Jianru ; Yang, Shuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6225-b817ee56ac50b7b706f0e79f428c9d2b3e88d469d1468226f15da569c9fb22513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alleles</topic><topic>Apoptosis</topic><topic>Arabidopsis</topic><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Cell death</topic><topic>Cell Death - genetics</topic><topic>Cell Membrane - metabolism</topic><topic>Cellular stress response</topic><topic>Chilling</topic><topic>CHS4 gene</topic><topic>Cloning</topic><topic>Cloning, Molecular</topic><topic>Cold</topic><topic>Cold Temperature</topic><topic>Cooling</topic><topic>Crosstalk</topic><topic>Disease resistance</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>Genetic analysis</topic><topic>Genetic mutation</topic><topic>Glutathione</topic><topic>Glutathione - metabolism</topic><topic>Hydrogen peroxide</topic><topic>Indexing in process</topic><topic>Lesions</topic><topic>Low temperature</topic><topic>LSD1</topic><topic>Mortality</topic><topic>Mutants</topic><topic>Mutation - genetics</topic><topic>Oxidative stress</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Plant cells</topic><topic>Plants</topic><topic>Reactive oxygen species</topic><topic>reactive oxygen species (ROS)</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Regulators</topic><topic>Salicylic acid</topic><topic>Signaling</topic><topic>Stress, Physiological - genetics</topic><topic>Temperature dependence</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xiaozhen</creatorcontrib><creatorcontrib>Li, Yansha</creatorcontrib><creatorcontrib>Zhang, Xiaoyan</creatorcontrib><creatorcontrib>Zuo, Jianru</creatorcontrib><creatorcontrib>Yang, Shuhua</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xiaozhen</au><au>Li, Yansha</au><au>Zhang, Xiaoyan</au><au>Zuo, Jianru</au><au>Yang, Shuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabidopsis LSD1 gene plays an important role in the regulation of low temperature-dependent cell death</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2010-07</date><risdate>2010</risdate><volume>187</volume><issue>2</issue><spage>301</spage><epage>312</epage><pages>301-312</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>In higher plants, the crosstalk between cold stress responses and reactive oxygen species (ROS) signaling is not well understood. Two chilling- sensitive mutants, chs4-1 and chs4-3, were characterized genetically and molecularly. The CHS4 gene, identified by map-based cloning, was found to be identical to LESION SIMULATING DISEASE RESISTANCE 1 (LSD1). We therefore renamed these two alleles lsd1-3 and lsd1-4, respectively. These two mutants exhibited an extensive cell death phenotype under cold stress conditions. Consistently, lsd1-3 plants exposed to cold showed up-regulation of the PR1 and PR2 genes, and increased accumulation of salicylic acid. These results indicate that low temperature is another trigger of cell death in lsd1 mutants. Furthermore, lsd1-3 plants accumulated higher concentrations of H₂O₂ and total glutathione under cold conditions than wild-type plants. Genetic analysis revealed that PAD4 and EDS1, two key signaling regulators mediating resistance responses, are required for the chilling-sensitive phenotype of lsd1-3. These findings reveal a role of LSD1 in regulating cell death trigged by cold stress and a link between cold stress responses and ROS-associated signaling.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>20456049</pmid><doi>10.1111/j.1469-8137.2010.03275.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2010-07, Vol.187 (2), p.301-312 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_856779088 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Wiley Free Content; IngentaConnect Free/Open Access Journals; Wiley Online Library All Journals |
subjects | Alleles Apoptosis Arabidopsis Arabidopsis - cytology Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Cell death Cell Death - genetics Cell Membrane - metabolism Cellular stress response Chilling CHS4 gene Cloning Cloning, Molecular Cold Cold Temperature Cooling Crosstalk Disease resistance DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Gene expression regulation Gene Expression Regulation, Plant Genes Genes, Plant - genetics Genetic analysis Genetic mutation Glutathione Glutathione - metabolism Hydrogen peroxide Indexing in process Lesions Low temperature LSD1 Mortality Mutants Mutation - genetics Oxidative stress Phenotype Phenotypes Plant cells Plants Reactive oxygen species reactive oxygen species (ROS) Reactive Oxygen Species - metabolism Regulators Salicylic acid Signaling Stress, Physiological - genetics Temperature dependence Transcription Factors - genetics Transcription Factors - metabolism |
title | Arabidopsis LSD1 gene plays an important role in the regulation of low temperature-dependent cell death |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabidopsis%20LSD1%20gene%20plays%20an%20important%20role%20in%20the%20regulation%20of%20low%20temperature-dependent%20cell%20death&rft.jtitle=The%20New%20phytologist&rft.au=Huang,%20Xiaozhen&rft.date=2010-07&rft.volume=187&rft.issue=2&rft.spage=301&rft.epage=312&rft.pages=301-312&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/j.1469-8137.2010.03275.x&rft_dat=%3Cjstor_proqu%3E40792379%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512282212&rft_id=info:pmid/20456049&rft_jstor_id=40792379&rfr_iscdi=true |