Multivariate Association and Dimension Reduction: A Generalization of Canonical Correlation Analysis

Summary In this article, we propose a new generalized index to recover relationships between two sets of random vectors by finding the vector projections that minimize an L ₂ distance between each projected vector and an unknown function of the other. The unknown functions are estimated using the Na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2010-12, Vol.66 (4), p.1107-1118
Hauptverfasser: Iaci, Ross, Sriram, T.N., Yin, Xiangrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1118
container_issue 4
container_start_page 1107
container_title Biometrics
container_volume 66
creator Iaci, Ross
Sriram, T.N.
Yin, Xiangrong
description Summary In this article, we propose a new generalized index to recover relationships between two sets of random vectors by finding the vector projections that minimize an L ₂ distance between each projected vector and an unknown function of the other. The unknown functions are estimated using the Nadaraya-Watson smoother. Extensions to multiple sets and groups of multiple sets are also discussed, and a bootstrap procedure is developed to detect the number of significant relationships. All the proposed methods are assessed through extensive simulations and real data analyses. In particular, for environmental data from Los Angeles County, we apply our multiple-set methodology to study relationships between mortality, weather, and pollutants vectors. Here, we detect existence of both linear and nonlinear relationships between the dimension-reduced vectors, which are then used to build nonlinear time-series regression models for the dimension-reduced mortality vector. These findings also illustrate potential use of our method in many other applications. A comprehensive assessment of our methodologies along with their theoretical properties are given in a Web Appendix.
doi_str_mv 10.1111/j.1541-0420.2010.01396.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856775261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40962507</jstor_id><sourcerecordid>40962507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5126-6ac1236aac394fdf025a0b37a2fa53e9988ea84f92388d32ff35d1e1c49b23843</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EotPCIwARG1YZ_BM7NotKQ0qHSlOKChXsrDuJjTxk4mInMMPT45AyCzbgja_v-Xyu7INQRvCcpPVyMye8IDkuKJ5TnLqYMCXmu3todhDuoxnGWOSsIJ-P0HGMm3RUHNOH6IhiSqlicoaay6Ht3XcIDnqTLWL0daqc7zLomuzMbU0Xx9O1aYZ67L_KFtnSdCZA635OpLdZBZ3vXA1tVvkQTDsJiw7afXTxEXpgoY3m8d1-gm7O33ys3uarq-VFtVjlNSdU5AJqQpkAqJkqbGMx5YDXrARqgTOjlJQGZGEVZVI2jFrLeEMMqQu1Tq2CnaAXk-9t8N8GE3u9dbE2bQud8UPUkouy5FSQf5OUECUYxYl8_he58UNID0sQEZJwJlmC5ATVwccYjNW3wW0h7DXBekxMb_QYjB6D0WNi-ndiepeuPr3zH9Zb0xwu_okoAacT8MO1Zv_fxvr1xdXlWCaDJ5PBJvY-HAwKrATluEx6Puku9mZ30CF81aJkJdef3i01WV2_P1-mQVXin028Ba_hS3BR33xIoxkmKv2YlOwXaDnFvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>816815383</pqid></control><display><type>article</type><title>Multivariate Association and Dimension Reduction: A Generalization of Canonical Correlation Analysis</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Oxford journals</source><source>JSTOR</source><creator>Iaci, Ross ; Sriram, T.N. ; Yin, Xiangrong</creator><creatorcontrib>Iaci, Ross ; Sriram, T.N. ; Yin, Xiangrong</creatorcontrib><description>Summary In this article, we propose a new generalized index to recover relationships between two sets of random vectors by finding the vector projections that minimize an L ₂ distance between each projected vector and an unknown function of the other. The unknown functions are estimated using the Nadaraya-Watson smoother. Extensions to multiple sets and groups of multiple sets are also discussed, and a bootstrap procedure is developed to detect the number of significant relationships. All the proposed methods are assessed through extensive simulations and real data analyses. In particular, for environmental data from Los Angeles County, we apply our multiple-set methodology to study relationships between mortality, weather, and pollutants vectors. Here, we detect existence of both linear and nonlinear relationships between the dimension-reduced vectors, which are then used to build nonlinear time-series regression models for the dimension-reduced mortality vector. These findings also illustrate potential use of our method in many other applications. A comprehensive assessment of our methodologies along with their theoretical properties are given in a Web Appendix.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2010.01396.x</identifier><identifier>PMID: 20222938</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>BIOMETRIC METHODOLOGY ; Biometrics ; Bootstrap method ; Bootstrapping ; Coefficients ; Correlation analysis ; Data Collection ; Data smoothing ; Datasets ; Dimension reduction ; Dimensionality reduction ; Environment ; Estimation methods ; Los Angeles ; Mathematical vectors ; Matrices ; Methods ; Models, Statistical ; Mortality ; Nadaraya-Watson smoother ; Nonlinear time-series regression model ; Pollutants ; Projection pursuit ; Regression Analysis ; Time series ; Weather</subject><ispartof>Biometrics, 2010-12, Vol.66 (4), p.1107-1118</ispartof><rights>The International Biometric Society, 2010</rights><rights>2010, The International Biometric Society</rights><rights>2010, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5126-6ac1236aac394fdf025a0b37a2fa53e9988ea84f92388d32ff35d1e1c49b23843</citedby><cites>FETCH-LOGICAL-c5126-6ac1236aac394fdf025a0b37a2fa53e9988ea84f92388d32ff35d1e1c49b23843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40962507$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40962507$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1416,27922,27923,45572,45573,58015,58019,58248,58252</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20222938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iaci, Ross</creatorcontrib><creatorcontrib>Sriram, T.N.</creatorcontrib><creatorcontrib>Yin, Xiangrong</creatorcontrib><title>Multivariate Association and Dimension Reduction: A Generalization of Canonical Correlation Analysis</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Summary In this article, we propose a new generalized index to recover relationships between two sets of random vectors by finding the vector projections that minimize an L ₂ distance between each projected vector and an unknown function of the other. The unknown functions are estimated using the Nadaraya-Watson smoother. Extensions to multiple sets and groups of multiple sets are also discussed, and a bootstrap procedure is developed to detect the number of significant relationships. All the proposed methods are assessed through extensive simulations and real data analyses. In particular, for environmental data from Los Angeles County, we apply our multiple-set methodology to study relationships between mortality, weather, and pollutants vectors. Here, we detect existence of both linear and nonlinear relationships between the dimension-reduced vectors, which are then used to build nonlinear time-series regression models for the dimension-reduced mortality vector. These findings also illustrate potential use of our method in many other applications. A comprehensive assessment of our methodologies along with their theoretical properties are given in a Web Appendix.</description><subject>BIOMETRIC METHODOLOGY</subject><subject>Biometrics</subject><subject>Bootstrap method</subject><subject>Bootstrapping</subject><subject>Coefficients</subject><subject>Correlation analysis</subject><subject>Data Collection</subject><subject>Data smoothing</subject><subject>Datasets</subject><subject>Dimension reduction</subject><subject>Dimensionality reduction</subject><subject>Environment</subject><subject>Estimation methods</subject><subject>Los Angeles</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Mortality</subject><subject>Nadaraya-Watson smoother</subject><subject>Nonlinear time-series regression model</subject><subject>Pollutants</subject><subject>Projection pursuit</subject><subject>Regression Analysis</subject><subject>Time series</subject><subject>Weather</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EotPCIwARG1YZ_BM7NotKQ0qHSlOKChXsrDuJjTxk4mInMMPT45AyCzbgja_v-Xyu7INQRvCcpPVyMye8IDkuKJ5TnLqYMCXmu3todhDuoxnGWOSsIJ-P0HGMm3RUHNOH6IhiSqlicoaay6Ht3XcIDnqTLWL0daqc7zLomuzMbU0Xx9O1aYZ67L_KFtnSdCZA635OpLdZBZ3vXA1tVvkQTDsJiw7afXTxEXpgoY3m8d1-gm7O33ys3uarq-VFtVjlNSdU5AJqQpkAqJkqbGMx5YDXrARqgTOjlJQGZGEVZVI2jFrLeEMMqQu1Tq2CnaAXk-9t8N8GE3u9dbE2bQud8UPUkouy5FSQf5OUECUYxYl8_he58UNID0sQEZJwJlmC5ATVwccYjNW3wW0h7DXBekxMb_QYjB6D0WNi-ndiepeuPr3zH9Zb0xwu_okoAacT8MO1Zv_fxvr1xdXlWCaDJ5PBJvY-HAwKrATluEx6Puku9mZ30CF81aJkJdef3i01WV2_P1-mQVXin028Ba_hS3BR33xIoxkmKv2YlOwXaDnFvw</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Iaci, Ross</creator><creator>Sriram, T.N.</creator><creator>Yin, Xiangrong</creator><general>Blackwell Publishing Inc</general><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>7QH</scope></search><sort><creationdate>201012</creationdate><title>Multivariate Association and Dimension Reduction: A Generalization of Canonical Correlation Analysis</title><author>Iaci, Ross ; Sriram, T.N. ; Yin, Xiangrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5126-6ac1236aac394fdf025a0b37a2fa53e9988ea84f92388d32ff35d1e1c49b23843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>BIOMETRIC METHODOLOGY</topic><topic>Biometrics</topic><topic>Bootstrap method</topic><topic>Bootstrapping</topic><topic>Coefficients</topic><topic>Correlation analysis</topic><topic>Data Collection</topic><topic>Data smoothing</topic><topic>Datasets</topic><topic>Dimension reduction</topic><topic>Dimensionality reduction</topic><topic>Environment</topic><topic>Estimation methods</topic><topic>Los Angeles</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Mortality</topic><topic>Nadaraya-Watson smoother</topic><topic>Nonlinear time-series regression model</topic><topic>Pollutants</topic><topic>Projection pursuit</topic><topic>Regression Analysis</topic><topic>Time series</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iaci, Ross</creatorcontrib><creatorcontrib>Sriram, T.N.</creatorcontrib><creatorcontrib>Yin, Xiangrong</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iaci, Ross</au><au>Sriram, T.N.</au><au>Yin, Xiangrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate Association and Dimension Reduction: A Generalization of Canonical Correlation Analysis</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2010-12</date><risdate>2010</risdate><volume>66</volume><issue>4</issue><spage>1107</spage><epage>1118</epage><pages>1107-1118</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Summary In this article, we propose a new generalized index to recover relationships between two sets of random vectors by finding the vector projections that minimize an L ₂ distance between each projected vector and an unknown function of the other. The unknown functions are estimated using the Nadaraya-Watson smoother. Extensions to multiple sets and groups of multiple sets are also discussed, and a bootstrap procedure is developed to detect the number of significant relationships. All the proposed methods are assessed through extensive simulations and real data analyses. In particular, for environmental data from Los Angeles County, we apply our multiple-set methodology to study relationships between mortality, weather, and pollutants vectors. Here, we detect existence of both linear and nonlinear relationships between the dimension-reduced vectors, which are then used to build nonlinear time-series regression models for the dimension-reduced mortality vector. These findings also illustrate potential use of our method in many other applications. A comprehensive assessment of our methodologies along with their theoretical properties are given in a Web Appendix.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>20222938</pmid><doi>10.1111/j.1541-0420.2010.01396.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2010-12, Vol.66 (4), p.1107-1118
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_856775261
source Wiley Online Library - AutoHoldings Journals; MEDLINE; Oxford journals; JSTOR
subjects BIOMETRIC METHODOLOGY
Biometrics
Bootstrap method
Bootstrapping
Coefficients
Correlation analysis
Data Collection
Data smoothing
Datasets
Dimension reduction
Dimensionality reduction
Environment
Estimation methods
Los Angeles
Mathematical vectors
Matrices
Methods
Models, Statistical
Mortality
Nadaraya-Watson smoother
Nonlinear time-series regression model
Pollutants
Projection pursuit
Regression Analysis
Time series
Weather
title Multivariate Association and Dimension Reduction: A Generalization of Canonical Correlation Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20Association%20and%20Dimension%20Reduction:%20A%20Generalization%20of%20Canonical%20Correlation%20Analysis&rft.jtitle=Biometrics&rft.au=Iaci,%20Ross&rft.date=2010-12&rft.volume=66&rft.issue=4&rft.spage=1107&rft.epage=1118&rft.pages=1107-1118&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2010.01396.x&rft_dat=%3Cjstor_proqu%3E40962507%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=816815383&rft_id=info:pmid/20222938&rft_jstor_id=40962507&rfr_iscdi=true