Multivariate Association and Dimension Reduction: A Generalization of Canonical Correlation Analysis
Summary In this article, we propose a new generalized index to recover relationships between two sets of random vectors by finding the vector projections that minimize an L ₂ distance between each projected vector and an unknown function of the other. The unknown functions are estimated using the Na...
Gespeichert in:
Veröffentlicht in: | Biometrics 2010-12, Vol.66 (4), p.1107-1118 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1118 |
---|---|
container_issue | 4 |
container_start_page | 1107 |
container_title | Biometrics |
container_volume | 66 |
creator | Iaci, Ross Sriram, T.N. Yin, Xiangrong |
description | Summary In this article, we propose a new generalized index to recover relationships between two sets of random vectors by finding the vector projections that minimize an L ₂ distance between each projected vector and an unknown function of the other. The unknown functions are estimated using the Nadaraya-Watson smoother. Extensions to multiple sets and groups of multiple sets are also discussed, and a bootstrap procedure is developed to detect the number of significant relationships. All the proposed methods are assessed through extensive simulations and real data analyses. In particular, for environmental data from Los Angeles County, we apply our multiple-set methodology to study relationships between mortality, weather, and pollutants vectors. Here, we detect existence of both linear and nonlinear relationships between the dimension-reduced vectors, which are then used to build nonlinear time-series regression models for the dimension-reduced mortality vector. These findings also illustrate potential use of our method in many other applications. A comprehensive assessment of our methodologies along with their theoretical properties are given in a Web Appendix. |
doi_str_mv | 10.1111/j.1541-0420.2010.01396.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856775261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40962507</jstor_id><sourcerecordid>40962507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5126-6ac1236aac394fdf025a0b37a2fa53e9988ea84f92388d32ff35d1e1c49b23843</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EotPCIwARG1YZ_BM7NotKQ0qHSlOKChXsrDuJjTxk4mInMMPT45AyCzbgja_v-Xyu7INQRvCcpPVyMye8IDkuKJ5TnLqYMCXmu3todhDuoxnGWOSsIJ-P0HGMm3RUHNOH6IhiSqlicoaay6Ht3XcIDnqTLWL0daqc7zLomuzMbU0Xx9O1aYZ67L_KFtnSdCZA635OpLdZBZ3vXA1tVvkQTDsJiw7afXTxEXpgoY3m8d1-gm7O33ys3uarq-VFtVjlNSdU5AJqQpkAqJkqbGMx5YDXrARqgTOjlJQGZGEVZVI2jFrLeEMMqQu1Tq2CnaAXk-9t8N8GE3u9dbE2bQud8UPUkouy5FSQf5OUECUYxYl8_he58UNID0sQEZJwJlmC5ATVwccYjNW3wW0h7DXBekxMb_QYjB6D0WNi-ndiepeuPr3zH9Zb0xwu_okoAacT8MO1Zv_fxvr1xdXlWCaDJ5PBJvY-HAwKrATluEx6Puku9mZ30CF81aJkJdef3i01WV2_P1-mQVXin028Ba_hS3BR33xIoxkmKv2YlOwXaDnFvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>816815383</pqid></control><display><type>article</type><title>Multivariate Association and Dimension Reduction: A Generalization of Canonical Correlation Analysis</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>Oxford journals</source><source>JSTOR</source><creator>Iaci, Ross ; Sriram, T.N. ; Yin, Xiangrong</creator><creatorcontrib>Iaci, Ross ; Sriram, T.N. ; Yin, Xiangrong</creatorcontrib><description>Summary In this article, we propose a new generalized index to recover relationships between two sets of random vectors by finding the vector projections that minimize an L ₂ distance between each projected vector and an unknown function of the other. The unknown functions are estimated using the Nadaraya-Watson smoother. Extensions to multiple sets and groups of multiple sets are also discussed, and a bootstrap procedure is developed to detect the number of significant relationships. All the proposed methods are assessed through extensive simulations and real data analyses. In particular, for environmental data from Los Angeles County, we apply our multiple-set methodology to study relationships between mortality, weather, and pollutants vectors. Here, we detect existence of both linear and nonlinear relationships between the dimension-reduced vectors, which are then used to build nonlinear time-series regression models for the dimension-reduced mortality vector. These findings also illustrate potential use of our method in many other applications. A comprehensive assessment of our methodologies along with their theoretical properties are given in a Web Appendix.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.1541-0420.2010.01396.x</identifier><identifier>PMID: 20222938</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>BIOMETRIC METHODOLOGY ; Biometrics ; Bootstrap method ; Bootstrapping ; Coefficients ; Correlation analysis ; Data Collection ; Data smoothing ; Datasets ; Dimension reduction ; Dimensionality reduction ; Environment ; Estimation methods ; Los Angeles ; Mathematical vectors ; Matrices ; Methods ; Models, Statistical ; Mortality ; Nadaraya-Watson smoother ; Nonlinear time-series regression model ; Pollutants ; Projection pursuit ; Regression Analysis ; Time series ; Weather</subject><ispartof>Biometrics, 2010-12, Vol.66 (4), p.1107-1118</ispartof><rights>The International Biometric Society, 2010</rights><rights>2010, The International Biometric Society</rights><rights>2010, The International Biometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5126-6ac1236aac394fdf025a0b37a2fa53e9988ea84f92388d32ff35d1e1c49b23843</citedby><cites>FETCH-LOGICAL-c5126-6ac1236aac394fdf025a0b37a2fa53e9988ea84f92388d32ff35d1e1c49b23843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40962507$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40962507$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1416,27922,27923,45572,45573,58015,58019,58248,58252</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20222938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iaci, Ross</creatorcontrib><creatorcontrib>Sriram, T.N.</creatorcontrib><creatorcontrib>Yin, Xiangrong</creatorcontrib><title>Multivariate Association and Dimension Reduction: A Generalization of Canonical Correlation Analysis</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Summary In this article, we propose a new generalized index to recover relationships between two sets of random vectors by finding the vector projections that minimize an L ₂ distance between each projected vector and an unknown function of the other. The unknown functions are estimated using the Nadaraya-Watson smoother. Extensions to multiple sets and groups of multiple sets are also discussed, and a bootstrap procedure is developed to detect the number of significant relationships. All the proposed methods are assessed through extensive simulations and real data analyses. In particular, for environmental data from Los Angeles County, we apply our multiple-set methodology to study relationships between mortality, weather, and pollutants vectors. Here, we detect existence of both linear and nonlinear relationships between the dimension-reduced vectors, which are then used to build nonlinear time-series regression models for the dimension-reduced mortality vector. These findings also illustrate potential use of our method in many other applications. A comprehensive assessment of our methodologies along with their theoretical properties are given in a Web Appendix.</description><subject>BIOMETRIC METHODOLOGY</subject><subject>Biometrics</subject><subject>Bootstrap method</subject><subject>Bootstrapping</subject><subject>Coefficients</subject><subject>Correlation analysis</subject><subject>Data Collection</subject><subject>Data smoothing</subject><subject>Datasets</subject><subject>Dimension reduction</subject><subject>Dimensionality reduction</subject><subject>Environment</subject><subject>Estimation methods</subject><subject>Los Angeles</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Mortality</subject><subject>Nadaraya-Watson smoother</subject><subject>Nonlinear time-series regression model</subject><subject>Pollutants</subject><subject>Projection pursuit</subject><subject>Regression Analysis</subject><subject>Time series</subject><subject>Weather</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EotPCIwARG1YZ_BM7NotKQ0qHSlOKChXsrDuJjTxk4mInMMPT45AyCzbgja_v-Xyu7INQRvCcpPVyMye8IDkuKJ5TnLqYMCXmu3todhDuoxnGWOSsIJ-P0HGMm3RUHNOH6IhiSqlicoaay6Ht3XcIDnqTLWL0daqc7zLomuzMbU0Xx9O1aYZ67L_KFtnSdCZA635OpLdZBZ3vXA1tVvkQTDsJiw7afXTxEXpgoY3m8d1-gm7O33ys3uarq-VFtVjlNSdU5AJqQpkAqJkqbGMx5YDXrARqgTOjlJQGZGEVZVI2jFrLeEMMqQu1Tq2CnaAXk-9t8N8GE3u9dbE2bQud8UPUkouy5FSQf5OUECUYxYl8_he58UNID0sQEZJwJlmC5ATVwccYjNW3wW0h7DXBekxMb_QYjB6D0WNi-ndiepeuPr3zH9Zb0xwu_okoAacT8MO1Zv_fxvr1xdXlWCaDJ5PBJvY-HAwKrATluEx6Puku9mZ30CF81aJkJdef3i01WV2_P1-mQVXin028Ba_hS3BR33xIoxkmKv2YlOwXaDnFvw</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Iaci, Ross</creator><creator>Sriram, T.N.</creator><creator>Yin, Xiangrong</creator><general>Blackwell Publishing Inc</general><general>Wiley-Blackwell</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>7QH</scope></search><sort><creationdate>201012</creationdate><title>Multivariate Association and Dimension Reduction: A Generalization of Canonical Correlation Analysis</title><author>Iaci, Ross ; Sriram, T.N. ; Yin, Xiangrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5126-6ac1236aac394fdf025a0b37a2fa53e9988ea84f92388d32ff35d1e1c49b23843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>BIOMETRIC METHODOLOGY</topic><topic>Biometrics</topic><topic>Bootstrap method</topic><topic>Bootstrapping</topic><topic>Coefficients</topic><topic>Correlation analysis</topic><topic>Data Collection</topic><topic>Data smoothing</topic><topic>Datasets</topic><topic>Dimension reduction</topic><topic>Dimensionality reduction</topic><topic>Environment</topic><topic>Estimation methods</topic><topic>Los Angeles</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Mortality</topic><topic>Nadaraya-Watson smoother</topic><topic>Nonlinear time-series regression model</topic><topic>Pollutants</topic><topic>Projection pursuit</topic><topic>Regression Analysis</topic><topic>Time series</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iaci, Ross</creatorcontrib><creatorcontrib>Sriram, T.N.</creatorcontrib><creatorcontrib>Yin, Xiangrong</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iaci, Ross</au><au>Sriram, T.N.</au><au>Yin, Xiangrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate Association and Dimension Reduction: A Generalization of Canonical Correlation Analysis</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2010-12</date><risdate>2010</risdate><volume>66</volume><issue>4</issue><spage>1107</spage><epage>1118</epage><pages>1107-1118</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>Summary In this article, we propose a new generalized index to recover relationships between two sets of random vectors by finding the vector projections that minimize an L ₂ distance between each projected vector and an unknown function of the other. The unknown functions are estimated using the Nadaraya-Watson smoother. Extensions to multiple sets and groups of multiple sets are also discussed, and a bootstrap procedure is developed to detect the number of significant relationships. All the proposed methods are assessed through extensive simulations and real data analyses. In particular, for environmental data from Los Angeles County, we apply our multiple-set methodology to study relationships between mortality, weather, and pollutants vectors. Here, we detect existence of both linear and nonlinear relationships between the dimension-reduced vectors, which are then used to build nonlinear time-series regression models for the dimension-reduced mortality vector. These findings also illustrate potential use of our method in many other applications. A comprehensive assessment of our methodologies along with their theoretical properties are given in a Web Appendix.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>20222938</pmid><doi>10.1111/j.1541-0420.2010.01396.x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2010-12, Vol.66 (4), p.1107-1118 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_856775261 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; Oxford journals; JSTOR |
subjects | BIOMETRIC METHODOLOGY Biometrics Bootstrap method Bootstrapping Coefficients Correlation analysis Data Collection Data smoothing Datasets Dimension reduction Dimensionality reduction Environment Estimation methods Los Angeles Mathematical vectors Matrices Methods Models, Statistical Mortality Nadaraya-Watson smoother Nonlinear time-series regression model Pollutants Projection pursuit Regression Analysis Time series Weather |
title | Multivariate Association and Dimension Reduction: A Generalization of Canonical Correlation Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20Association%20and%20Dimension%20Reduction:%20A%20Generalization%20of%20Canonical%20Correlation%20Analysis&rft.jtitle=Biometrics&rft.au=Iaci,%20Ross&rft.date=2010-12&rft.volume=66&rft.issue=4&rft.spage=1107&rft.epage=1118&rft.pages=1107-1118&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.1541-0420.2010.01396.x&rft_dat=%3Cjstor_proqu%3E40962507%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=816815383&rft_id=info:pmid/20222938&rft_jstor_id=40962507&rfr_iscdi=true |