Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa
Neurospora crassa has a putative histidine phosphotransfer protein (HPT-1) that transfers signals from 11 histidine kinases to two putative response regulators (RRG-1 and RRG-2) in its histidine-to-aspartate phosphorelay system. The hpt-1 gene was successfully disrupted in the os-2 (MAP kinase gene)...
Gespeichert in:
Veröffentlicht in: | Current genetics 2007-03, Vol.51 (3), p.197-208 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | 3 |
container_start_page | 197 |
container_title | Current genetics |
container_volume | 51 |
creator | Banno, Shinpei Noguchi, Rieko Yamashita, Kazuhiro Fukumori, Fumiyasu Kimura, Makoto Yamaguchi, Isamu Fujimura, Makoto |
description | Neurospora crassa has a putative histidine phosphotransfer protein (HPT-1) that transfers signals from 11 histidine kinases to two putative response regulators (RRG-1 and RRG-2) in its histidine-to-aspartate phosphorelay system. The hpt-1 gene was successfully disrupted in the os-2 (MAP kinase gene) mutant, but not in the wild-type strain in this study. Crossing the resultant hpt-1; os-2 mutants with the wild-type or os-1 (histidine kinase gene) mutant strains produced no progeny with hpt-1 or os-1; hpt-1 mutation, strongly suggesting that hpt-1 is essential for growth unless downstream OS-2 is inactivated. hpt-1 mutation partially recovered the osmotic sensitivity of os-2 mutants, implying the involvement of yeast Skn7-like RRG-2 in osmoregulation. However, the rrg-2 disruption did not change the osmotic sensitivity of the wild-type strain and the os-2 mutant, suggesting that rrg-2 did not participate in the osmoregulation. Both rrg-2 and os-2 single mutation slightly increased sensitivity to t-butyl hydroperoxide, and rrg-2 and hpt-1 mutations increased the os-2 mutant's sensitivity. Although OS-1 is considered as a positive regulator of OS-2 MAP kinase, our results suggested that HPT-1 negatively regulated downstream MAP kinase cascade, and that OS-2 and RRG-2 probably participate independently in the oxidative stress response in N. crassa. |
doi_str_mv | 10.1007/s00294-006-0116-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_856772424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>856772424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-349939e05a9121bdaba67be005c8842e126b40ee64b09010fa3a55d5f1e7f93d3</originalsourceid><addsrcrecordid>eNpdkc9u1DAQhy0EokvhAbiAxYULLuM_iZ1jVUEXqWrR0p4tJ3FWrpI4eJKKPgcvXG-zEhInyzPffJbnR8h7DmccQH9FAFEpBlAy4Lxk5gXZcCUFg8rIl2QDXAtmwMgT8gbxHoALU-nX5CTXM6_lhvzdxd4jjR2dltnN4cHTbUA2R3aOE8WwH10fxj0dYrscwO3PW8apG1u6210y8YXGkT4EV4c-zI_PdfQjhiw63OdIIw5xDs1zK_4J7foGzskjZl8Y6bVfUsQpJkeb5BDdW_Kqcz36d8fzlNx9_3Z7sWVXN5c_Ls6vWKOUmZlUVSUrD4WruOB162pX6toDFI0xSnguylqB96WqoQIOnZOuKNqi4153lWzlKfm8eqcUfy8eZzsEbHzfu9HHBa0pSq2FEiqTn_4j7-OS8moyBLqQGkqeIb5CTf4OJt_ZKYXBpUfLwR7ysmteNudlD3lZk2c-HMVLPfj238QxoAx8XIHORev2KaC9-yWAy-xTWphSPgFlOpoD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>807537061</pqid></control><display><type>article</type><title>Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Banno, Shinpei ; Noguchi, Rieko ; Yamashita, Kazuhiro ; Fukumori, Fumiyasu ; Kimura, Makoto ; Yamaguchi, Isamu ; Fujimura, Makoto</creator><creatorcontrib>Banno, Shinpei ; Noguchi, Rieko ; Yamashita, Kazuhiro ; Fukumori, Fumiyasu ; Kimura, Makoto ; Yamaguchi, Isamu ; Fujimura, Makoto</creatorcontrib><description>Neurospora crassa has a putative histidine phosphotransfer protein (HPT-1) that transfers signals from 11 histidine kinases to two putative response regulators (RRG-1 and RRG-2) in its histidine-to-aspartate phosphorelay system. The hpt-1 gene was successfully disrupted in the os-2 (MAP kinase gene) mutant, but not in the wild-type strain in this study. Crossing the resultant hpt-1; os-2 mutants with the wild-type or os-1 (histidine kinase gene) mutant strains produced no progeny with hpt-1 or os-1; hpt-1 mutation, strongly suggesting that hpt-1 is essential for growth unless downstream OS-2 is inactivated. hpt-1 mutation partially recovered the osmotic sensitivity of os-2 mutants, implying the involvement of yeast Skn7-like RRG-2 in osmoregulation. However, the rrg-2 disruption did not change the osmotic sensitivity of the wild-type strain and the os-2 mutant, suggesting that rrg-2 did not participate in the osmoregulation. Both rrg-2 and os-2 single mutation slightly increased sensitivity to t-butyl hydroperoxide, and rrg-2 and hpt-1 mutations increased the os-2 mutant's sensitivity. Although OS-1 is considered as a positive regulator of OS-2 MAP kinase, our results suggested that HPT-1 negatively regulated downstream MAP kinase cascade, and that OS-2 and RRG-2 probably participate independently in the oxidative stress response in N. crassa.</description><identifier>ISSN: 0172-8083</identifier><identifier>EISSN: 1432-0983</identifier><identifier>DOI: 10.1007/s00294-006-0116-8</identifier><identifier>PMID: 17211673</identifier><language>eng</language><publisher>United States: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Amino Acid Motifs - genetics ; Amino Acid Sequence ; Amino Acid Substitution - genetics ; Aminoimidazole Carboxamide - analogs & derivatives ; Aminoimidazole Carboxamide - pharmacology ; Aspartic Acid - genetics ; Aspartic Acid - physiology ; Butyl hydroperoxide ; Fungal Proteins - genetics ; Fungal Proteins - physiology ; Fungicides, Industrial - pharmacology ; Genetic crosses ; Histidine ; Histidine - genetics ; Histidine - physiology ; Histidine Kinase ; Histidine phosphotransfer ; Hydantoins - pharmacology ; MAP kinase ; Mitogen-Activated Protein Kinases - genetics ; Mitogen-Activated Protein Kinases - physiology ; Molecular Sequence Data ; Mutants ; Mutation ; Neurospora crassa ; Neurospora crassa - drug effects ; Neurospora crassa - genetics ; Neurospora crassa - growth & development ; Neurospora crassa - physiology ; Osmoregulation ; Osmotic Pressure - drug effects ; Oxidative stress ; Oxidative Stress - drug effects ; Oxidative Stress - genetics ; Oxidative Stress - physiology ; Point Mutation ; Protein Kinases - genetics ; Response regulator ; Signal Transduction - drug effects ; Signal Transduction - genetics ; Signal Transduction - physiology ; Two-component signal transduction ; Yeasts</subject><ispartof>Current genetics, 2007-03, Vol.51 (3), p.197-208</ispartof><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-349939e05a9121bdaba67be005c8842e126b40ee64b09010fa3a55d5f1e7f93d3</citedby><cites>FETCH-LOGICAL-c448t-349939e05a9121bdaba67be005c8842e126b40ee64b09010fa3a55d5f1e7f93d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17211673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Banno, Shinpei</creatorcontrib><creatorcontrib>Noguchi, Rieko</creatorcontrib><creatorcontrib>Yamashita, Kazuhiro</creatorcontrib><creatorcontrib>Fukumori, Fumiyasu</creatorcontrib><creatorcontrib>Kimura, Makoto</creatorcontrib><creatorcontrib>Yamaguchi, Isamu</creatorcontrib><creatorcontrib>Fujimura, Makoto</creatorcontrib><title>Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa</title><title>Current genetics</title><addtitle>Curr Genet</addtitle><description>Neurospora crassa has a putative histidine phosphotransfer protein (HPT-1) that transfers signals from 11 histidine kinases to two putative response regulators (RRG-1 and RRG-2) in its histidine-to-aspartate phosphorelay system. The hpt-1 gene was successfully disrupted in the os-2 (MAP kinase gene) mutant, but not in the wild-type strain in this study. Crossing the resultant hpt-1; os-2 mutants with the wild-type or os-1 (histidine kinase gene) mutant strains produced no progeny with hpt-1 or os-1; hpt-1 mutation, strongly suggesting that hpt-1 is essential for growth unless downstream OS-2 is inactivated. hpt-1 mutation partially recovered the osmotic sensitivity of os-2 mutants, implying the involvement of yeast Skn7-like RRG-2 in osmoregulation. However, the rrg-2 disruption did not change the osmotic sensitivity of the wild-type strain and the os-2 mutant, suggesting that rrg-2 did not participate in the osmoregulation. Both rrg-2 and os-2 single mutation slightly increased sensitivity to t-butyl hydroperoxide, and rrg-2 and hpt-1 mutations increased the os-2 mutant's sensitivity. Although OS-1 is considered as a positive regulator of OS-2 MAP kinase, our results suggested that HPT-1 negatively regulated downstream MAP kinase cascade, and that OS-2 and RRG-2 probably participate independently in the oxidative stress response in N. crassa.</description><subject>Amino Acid Motifs - genetics</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution - genetics</subject><subject>Aminoimidazole Carboxamide - analogs & derivatives</subject><subject>Aminoimidazole Carboxamide - pharmacology</subject><subject>Aspartic Acid - genetics</subject><subject>Aspartic Acid - physiology</subject><subject>Butyl hydroperoxide</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - physiology</subject><subject>Fungicides, Industrial - pharmacology</subject><subject>Genetic crosses</subject><subject>Histidine</subject><subject>Histidine - genetics</subject><subject>Histidine - physiology</subject><subject>Histidine Kinase</subject><subject>Histidine phosphotransfer</subject><subject>Hydantoins - pharmacology</subject><subject>MAP kinase</subject><subject>Mitogen-Activated Protein Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinases - physiology</subject><subject>Molecular Sequence Data</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Neurospora crassa</subject><subject>Neurospora crassa - drug effects</subject><subject>Neurospora crassa - genetics</subject><subject>Neurospora crassa - growth & development</subject><subject>Neurospora crassa - physiology</subject><subject>Osmoregulation</subject><subject>Osmotic Pressure - drug effects</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxidative Stress - genetics</subject><subject>Oxidative Stress - physiology</subject><subject>Point Mutation</subject><subject>Protein Kinases - genetics</subject><subject>Response regulator</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>Two-component signal transduction</subject><subject>Yeasts</subject><issn>0172-8083</issn><issn>1432-0983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkc9u1DAQhy0EokvhAbiAxYULLuM_iZ1jVUEXqWrR0p4tJ3FWrpI4eJKKPgcvXG-zEhInyzPffJbnR8h7DmccQH9FAFEpBlAy4Lxk5gXZcCUFg8rIl2QDXAtmwMgT8gbxHoALU-nX5CTXM6_lhvzdxd4jjR2dltnN4cHTbUA2R3aOE8WwH10fxj0dYrscwO3PW8apG1u6210y8YXGkT4EV4c-zI_PdfQjhiw63OdIIw5xDs1zK_4J7foGzskjZl8Y6bVfUsQpJkeb5BDdW_Kqcz36d8fzlNx9_3Z7sWVXN5c_Ls6vWKOUmZlUVSUrD4WruOB162pX6toDFI0xSnguylqB96WqoQIOnZOuKNqi4153lWzlKfm8eqcUfy8eZzsEbHzfu9HHBa0pSq2FEiqTn_4j7-OS8moyBLqQGkqeIb5CTf4OJt_ZKYXBpUfLwR7ysmteNudlD3lZk2c-HMVLPfj238QxoAx8XIHORev2KaC9-yWAy-xTWphSPgFlOpoD</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Banno, Shinpei</creator><creator>Noguchi, Rieko</creator><creator>Yamashita, Kazuhiro</creator><creator>Fukumori, Fumiyasu</creator><creator>Kimura, Makoto</creator><creator>Yamaguchi, Isamu</creator><creator>Fujimura, Makoto</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope></search><sort><creationdate>20070301</creationdate><title>Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa</title><author>Banno, Shinpei ; Noguchi, Rieko ; Yamashita, Kazuhiro ; Fukumori, Fumiyasu ; Kimura, Makoto ; Yamaguchi, Isamu ; Fujimura, Makoto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-349939e05a9121bdaba67be005c8842e126b40ee64b09010fa3a55d5f1e7f93d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amino Acid Motifs - genetics</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution - genetics</topic><topic>Aminoimidazole Carboxamide - analogs & derivatives</topic><topic>Aminoimidazole Carboxamide - pharmacology</topic><topic>Aspartic Acid - genetics</topic><topic>Aspartic Acid - physiology</topic><topic>Butyl hydroperoxide</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - physiology</topic><topic>Fungicides, Industrial - pharmacology</topic><topic>Genetic crosses</topic><topic>Histidine</topic><topic>Histidine - genetics</topic><topic>Histidine - physiology</topic><topic>Histidine Kinase</topic><topic>Histidine phosphotransfer</topic><topic>Hydantoins - pharmacology</topic><topic>MAP kinase</topic><topic>Mitogen-Activated Protein Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinases - physiology</topic><topic>Molecular Sequence Data</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Neurospora crassa</topic><topic>Neurospora crassa - drug effects</topic><topic>Neurospora crassa - genetics</topic><topic>Neurospora crassa - growth & development</topic><topic>Neurospora crassa - physiology</topic><topic>Osmoregulation</topic><topic>Osmotic Pressure - drug effects</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxidative Stress - genetics</topic><topic>Oxidative Stress - physiology</topic><topic>Point Mutation</topic><topic>Protein Kinases - genetics</topic><topic>Response regulator</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>Two-component signal transduction</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banno, Shinpei</creatorcontrib><creatorcontrib>Noguchi, Rieko</creatorcontrib><creatorcontrib>Yamashita, Kazuhiro</creatorcontrib><creatorcontrib>Fukumori, Fumiyasu</creatorcontrib><creatorcontrib>Kimura, Makoto</creatorcontrib><creatorcontrib>Yamaguchi, Isamu</creatorcontrib><creatorcontrib>Fujimura, Makoto</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Current genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banno, Shinpei</au><au>Noguchi, Rieko</au><au>Yamashita, Kazuhiro</au><au>Fukumori, Fumiyasu</au><au>Kimura, Makoto</au><au>Yamaguchi, Isamu</au><au>Fujimura, Makoto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa</atitle><jtitle>Current genetics</jtitle><addtitle>Curr Genet</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>51</volume><issue>3</issue><spage>197</spage><epage>208</epage><pages>197-208</pages><issn>0172-8083</issn><eissn>1432-0983</eissn><abstract>Neurospora crassa has a putative histidine phosphotransfer protein (HPT-1) that transfers signals from 11 histidine kinases to two putative response regulators (RRG-1 and RRG-2) in its histidine-to-aspartate phosphorelay system. The hpt-1 gene was successfully disrupted in the os-2 (MAP kinase gene) mutant, but not in the wild-type strain in this study. Crossing the resultant hpt-1; os-2 mutants with the wild-type or os-1 (histidine kinase gene) mutant strains produced no progeny with hpt-1 or os-1; hpt-1 mutation, strongly suggesting that hpt-1 is essential for growth unless downstream OS-2 is inactivated. hpt-1 mutation partially recovered the osmotic sensitivity of os-2 mutants, implying the involvement of yeast Skn7-like RRG-2 in osmoregulation. However, the rrg-2 disruption did not change the osmotic sensitivity of the wild-type strain and the os-2 mutant, suggesting that rrg-2 did not participate in the osmoregulation. Both rrg-2 and os-2 single mutation slightly increased sensitivity to t-butyl hydroperoxide, and rrg-2 and hpt-1 mutations increased the os-2 mutant's sensitivity. Although OS-1 is considered as a positive regulator of OS-2 MAP kinase, our results suggested that HPT-1 negatively regulated downstream MAP kinase cascade, and that OS-2 and RRG-2 probably participate independently in the oxidative stress response in N. crassa.</abstract><cop>United States</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>17211673</pmid><doi>10.1007/s00294-006-0116-8</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0172-8083 |
ispartof | Current genetics, 2007-03, Vol.51 (3), p.197-208 |
issn | 0172-8083 1432-0983 |
language | eng |
recordid | cdi_proquest_miscellaneous_856772424 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Amino Acid Motifs - genetics Amino Acid Sequence Amino Acid Substitution - genetics Aminoimidazole Carboxamide - analogs & derivatives Aminoimidazole Carboxamide - pharmacology Aspartic Acid - genetics Aspartic Acid - physiology Butyl hydroperoxide Fungal Proteins - genetics Fungal Proteins - physiology Fungicides, Industrial - pharmacology Genetic crosses Histidine Histidine - genetics Histidine - physiology Histidine Kinase Histidine phosphotransfer Hydantoins - pharmacology MAP kinase Mitogen-Activated Protein Kinases - genetics Mitogen-Activated Protein Kinases - physiology Molecular Sequence Data Mutants Mutation Neurospora crassa Neurospora crassa - drug effects Neurospora crassa - genetics Neurospora crassa - growth & development Neurospora crassa - physiology Osmoregulation Osmotic Pressure - drug effects Oxidative stress Oxidative Stress - drug effects Oxidative Stress - genetics Oxidative Stress - physiology Point Mutation Protein Kinases - genetics Response regulator Signal Transduction - drug effects Signal Transduction - genetics Signal Transduction - physiology Two-component signal transduction Yeasts |
title | Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roles%20of%20putative%20His-to-Asp%20signaling%20modules%20HPT-1%20and%20RRG-2,%20on%20viability%20and%20sensitivity%20to%20osmotic%20and%20oxidative%20stresses%20in%20Neurospora%20crassa&rft.jtitle=Current%20genetics&rft.au=Banno,%20Shinpei&rft.date=2007-03-01&rft.volume=51&rft.issue=3&rft.spage=197&rft.epage=208&rft.pages=197-208&rft.issn=0172-8083&rft.eissn=1432-0983&rft_id=info:doi/10.1007/s00294-006-0116-8&rft_dat=%3Cproquest_cross%3E856772424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=807537061&rft_id=info:pmid/17211673&rfr_iscdi=true |