Cross-Resistance in Fluridone-Resistant Hydrilla to Other Bleaching Herbicides

The development of fluridone resistance by hydrilla has significantly impacted hydrilla management, and research is ongoing to develop alternate herbicides for effective hydrilla control. We determined the potential cross-resistance in fluridone-resistant hydrilla to other bleaching herbicides norfl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weed science 2009-09, Vol.57 (5), p.482-488
Hauptverfasser: Puri, Atul, Haller, William T., Netherland, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 488
container_issue 5
container_start_page 482
container_title Weed science
container_volume 57
creator Puri, Atul
Haller, William T.
Netherland, Michael D.
description The development of fluridone resistance by hydrilla has significantly impacted hydrilla management, and research is ongoing to develop alternate herbicides for effective hydrilla control. We determined the potential cross-resistance in fluridone-resistant hydrilla to other bleaching herbicides norflurazon, mesotrione, and topramezone-methyl. Phytoene, β-carotene, and chlorophyll contents as a function of hydrilla biotype and herbicide treatment were evaluated. Hydrilla shoot tips were collected from fluridone-susceptible (S) and -resistant (R) biotypes and exposed to 5, 25, 50, 75, and 100 µg L−1 of herbicide. The susceptible biotype showed an increase in phytoene and a decrease in β-carotene and chlorophyll contents when treated with 5 µg L−1 fluridone, whereas higher doses of fluridone were required to affect these pigments in the resistant biotype. There was no difference in response by S and R biotypes to mesotrione and topramezone-methyl, with both biotypes showing significant affects on pigment contents at 5 µg L−1. Higher doses of norflurazon were required to affect these pigments in the R compared to the S biotype. The S biotype had EC50 values of 11.7, 12.2, and 4.7 µg L−1, whereas the R biotype had EC50 values of 56.6, 41.1, and 41.7 µg L−1 fluridone for phytoene, β-carotene, and chlorophyll contents, respectively. There was no difference in EC50 for phytoene, β-carotene, and chlorophyll values between the hydrilla biotypes for mesotrione and topramezone-methyl herbicides. In fluridone-susceptible and -resistant hydrilla biotypes, EC50 values for phytoene, β-carotene, and chlorophyll were 12.4 to 11.8, 10.2 to 13.2, and 3.1 to 4.6 µg L−1 mesotrione and 12.6 to 13.5, 13.3 to 11.9, and 4.6 to 5.7 µg L−1 topramezone-methyl, respectively. For norflurazon, S and R biotypes had EC50 values of 33.1, 45.4, and 40.6 µg L−1 and 84.6, 81.0, and 92.7 µg L−1 for phytoene, β-carotene, and chlorophyll, respectively. These studies confirmed negative cross-resistance of fluridone-resistant hydrilla to mesotrione and topramezone-methyl and a positive cross-resistance to norflurazon. Nomenclature: Fluridone; mesotrione; norflurazon; topramezone-methyl; hydrilla, Hydrilla verticillata (L.f.) Royle HYLLI.
doi_str_mv 10.1614/WS-09-060.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856769052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1614_WS_09_060_1</cupid><jstor_id>40586860</jstor_id><sourcerecordid>40586860</sourcerecordid><originalsourceid>FETCH-LOGICAL-b445t-c197f5f3db7a200e3be9368ba0a43addd525d129b313ca3488a9615ee4e8b86f3</originalsourceid><addsrcrecordid>eNqNkc9LHDEcxUOx0FV76rk4F5FSYvN7kmO71K4gFdyKx5DMfGfNMjvRZPbgf2-WWfZW8RSS98nj-30PoS-UXFJFxY-HJSYGE1WuH9CMSkkwq6U5QjNCBMe0FvITOs55TQhVjJoZ-jtPMWd8Bznk0Q0NVGGorvptCm0c4PA-VouXNoW-d9UYq9vxEVL1qwfXPIZhVS0g-dCEFvIp-ti5PsPn_XmC7q9-_5sv8M3tn-v5zxvshZAjbqipO9nx1teOEQLcg-FKe0ec4K5tW8lkS5nxnPLGcaG1M4pKAAHaa9XxE3Qx-T6l-LyFPNpNyA2U-QaI22y1VLUyRLL3kZoZXcjvE9nsIknQ2acUNi69WErsLl77sLTE2BKvpYU-3_u63Li-SyW8kA9fSrjS6FoU7uvErfMY00EXRGqlFSn62aR3Llq3SsXjfskI5aUhzWq9c8D7udzGl15WYNdxm4aS738m-zbxPsTS4ZtbvALFsahT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856768298</pqid></control><display><type>article</type><title>Cross-Resistance in Fluridone-Resistant Hydrilla to Other Bleaching Herbicides</title><source>BioOne Complete</source><source>Jstor Complete Legacy</source><creator>Puri, Atul ; Haller, William T. ; Netherland, Michael D.</creator><creatorcontrib>Puri, Atul ; Haller, William T. ; Netherland, Michael D.</creatorcontrib><description>The development of fluridone resistance by hydrilla has significantly impacted hydrilla management, and research is ongoing to develop alternate herbicides for effective hydrilla control. We determined the potential cross-resistance in fluridone-resistant hydrilla to other bleaching herbicides norflurazon, mesotrione, and topramezone-methyl. Phytoene, β-carotene, and chlorophyll contents as a function of hydrilla biotype and herbicide treatment were evaluated. Hydrilla shoot tips were collected from fluridone-susceptible (S) and -resistant (R) biotypes and exposed to 5, 25, 50, 75, and 100 µg L−1 of herbicide. The susceptible biotype showed an increase in phytoene and a decrease in β-carotene and chlorophyll contents when treated with 5 µg L−1 fluridone, whereas higher doses of fluridone were required to affect these pigments in the resistant biotype. There was no difference in response by S and R biotypes to mesotrione and topramezone-methyl, with both biotypes showing significant affects on pigment contents at 5 µg L−1. Higher doses of norflurazon were required to affect these pigments in the R compared to the S biotype. The S biotype had EC50 values of 11.7, 12.2, and 4.7 µg L−1, whereas the R biotype had EC50 values of 56.6, 41.1, and 41.7 µg L−1 fluridone for phytoene, β-carotene, and chlorophyll contents, respectively. There was no difference in EC50 for phytoene, β-carotene, and chlorophyll values between the hydrilla biotypes for mesotrione and topramezone-methyl herbicides. In fluridone-susceptible and -resistant hydrilla biotypes, EC50 values for phytoene, β-carotene, and chlorophyll were 12.4 to 11.8, 10.2 to 13.2, and 3.1 to 4.6 µg L−1 mesotrione and 12.6 to 13.5, 13.3 to 11.9, and 4.6 to 5.7 µg L−1 topramezone-methyl, respectively. For norflurazon, S and R biotypes had EC50 values of 33.1, 45.4, and 40.6 µg L−1 and 84.6, 81.0, and 92.7 µg L−1 for phytoene, β-carotene, and chlorophyll, respectively. These studies confirmed negative cross-resistance of fluridone-resistant hydrilla to mesotrione and topramezone-methyl and a positive cross-resistance to norflurazon. Nomenclature: Fluridone; mesotrione; norflurazon; topramezone-methyl; hydrilla, Hydrilla verticillata (L.f.) Royle HYLLI.</description><identifier>ISSN: 0043-1745</identifier><identifier>EISSN: 1550-2759</identifier><identifier>DOI: 10.1614/WS-09-060.1</identifier><identifier>CODEN: WEESA6</identifier><language>eng</language><publisher>810 East 10th Street, Lawrence, KS 66044-8897: Weed Science Society of America</publisher><subject>application rate ; aquatic weed ; aquatic weeds ; beta-carotene ; Biological and medical sciences ; Biosynthesis ; biotypes ; Bleaching ; Carotenoids ; chemical constituents of plants ; Chemical control ; chlorophyll ; Chlorophylls ; Cross resistance ; effective concentration 50 ; Enzymes ; fluridone ; Fundamental and applied biological sciences. Psychology ; Herbicide resistance ; herbicide-resistant weeds ; Herbicides ; Hydrilla ; Hydrilla verticillata ; Invasive species ; mesotrione ; norflurazon ; noxious weeds ; Parasitic plants. Weeds ; PHYSIOLOGY, CHEMISTRY, AND BIOCHEMISTRY ; phytoene ; Phytopathology. Animal pests. Plant and forest protection ; pigment content ; Pigments ; plant pigments ; Plants ; topramezone ; weed control ; Weeds</subject><ispartof>Weed science, 2009-09, Vol.57 (5), p.482-488</ispartof><rights>Weed Science Society of America</rights><rights>Copyright © Weed Science Society of America</rights><rights>Copyright 2009 Weed Science Society of America</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b445t-c197f5f3db7a200e3be9368ba0a43addd525d129b313ca3488a9615ee4e8b86f3</citedby><cites>FETCH-LOGICAL-b445t-c197f5f3db7a200e3be9368ba0a43addd525d129b313ca3488a9615ee4e8b86f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://bioone.org/doi/pdf/10.1614/WS-09-060.1$$EPDF$$P50$$Gbioone$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40586860$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,26957,27903,27904,52341,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21959874$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Puri, Atul</creatorcontrib><creatorcontrib>Haller, William T.</creatorcontrib><creatorcontrib>Netherland, Michael D.</creatorcontrib><title>Cross-Resistance in Fluridone-Resistant Hydrilla to Other Bleaching Herbicides</title><title>Weed science</title><addtitle>Weed sci</addtitle><description>The development of fluridone resistance by hydrilla has significantly impacted hydrilla management, and research is ongoing to develop alternate herbicides for effective hydrilla control. We determined the potential cross-resistance in fluridone-resistant hydrilla to other bleaching herbicides norflurazon, mesotrione, and topramezone-methyl. Phytoene, β-carotene, and chlorophyll contents as a function of hydrilla biotype and herbicide treatment were evaluated. Hydrilla shoot tips were collected from fluridone-susceptible (S) and -resistant (R) biotypes and exposed to 5, 25, 50, 75, and 100 µg L−1 of herbicide. The susceptible biotype showed an increase in phytoene and a decrease in β-carotene and chlorophyll contents when treated with 5 µg L−1 fluridone, whereas higher doses of fluridone were required to affect these pigments in the resistant biotype. There was no difference in response by S and R biotypes to mesotrione and topramezone-methyl, with both biotypes showing significant affects on pigment contents at 5 µg L−1. Higher doses of norflurazon were required to affect these pigments in the R compared to the S biotype. The S biotype had EC50 values of 11.7, 12.2, and 4.7 µg L−1, whereas the R biotype had EC50 values of 56.6, 41.1, and 41.7 µg L−1 fluridone for phytoene, β-carotene, and chlorophyll contents, respectively. There was no difference in EC50 for phytoene, β-carotene, and chlorophyll values between the hydrilla biotypes for mesotrione and topramezone-methyl herbicides. In fluridone-susceptible and -resistant hydrilla biotypes, EC50 values for phytoene, β-carotene, and chlorophyll were 12.4 to 11.8, 10.2 to 13.2, and 3.1 to 4.6 µg L−1 mesotrione and 12.6 to 13.5, 13.3 to 11.9, and 4.6 to 5.7 µg L−1 topramezone-methyl, respectively. For norflurazon, S and R biotypes had EC50 values of 33.1, 45.4, and 40.6 µg L−1 and 84.6, 81.0, and 92.7 µg L−1 for phytoene, β-carotene, and chlorophyll, respectively. These studies confirmed negative cross-resistance of fluridone-resistant hydrilla to mesotrione and topramezone-methyl and a positive cross-resistance to norflurazon. Nomenclature: Fluridone; mesotrione; norflurazon; topramezone-methyl; hydrilla, Hydrilla verticillata (L.f.) Royle HYLLI.</description><subject>application rate</subject><subject>aquatic weed</subject><subject>aquatic weeds</subject><subject>beta-carotene</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>biotypes</subject><subject>Bleaching</subject><subject>Carotenoids</subject><subject>chemical constituents of plants</subject><subject>Chemical control</subject><subject>chlorophyll</subject><subject>Chlorophylls</subject><subject>Cross resistance</subject><subject>effective concentration 50</subject><subject>Enzymes</subject><subject>fluridone</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Herbicide resistance</subject><subject>herbicide-resistant weeds</subject><subject>Herbicides</subject><subject>Hydrilla</subject><subject>Hydrilla verticillata</subject><subject>Invasive species</subject><subject>mesotrione</subject><subject>norflurazon</subject><subject>noxious weeds</subject><subject>Parasitic plants. Weeds</subject><subject>PHYSIOLOGY, CHEMISTRY, AND BIOCHEMISTRY</subject><subject>phytoene</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>pigment content</subject><subject>Pigments</subject><subject>plant pigments</subject><subject>Plants</subject><subject>topramezone</subject><subject>weed control</subject><subject>Weeds</subject><issn>0043-1745</issn><issn>1550-2759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkc9LHDEcxUOx0FV76rk4F5FSYvN7kmO71K4gFdyKx5DMfGfNMjvRZPbgf2-WWfZW8RSS98nj-30PoS-UXFJFxY-HJSYGE1WuH9CMSkkwq6U5QjNCBMe0FvITOs55TQhVjJoZ-jtPMWd8Bznk0Q0NVGGorvptCm0c4PA-VouXNoW-d9UYq9vxEVL1qwfXPIZhVS0g-dCEFvIp-ti5PsPn_XmC7q9-_5sv8M3tn-v5zxvshZAjbqipO9nx1teOEQLcg-FKe0ec4K5tW8lkS5nxnPLGcaG1M4pKAAHaa9XxE3Qx-T6l-LyFPNpNyA2U-QaI22y1VLUyRLL3kZoZXcjvE9nsIknQ2acUNi69WErsLl77sLTE2BKvpYU-3_u63Li-SyW8kA9fSrjS6FoU7uvErfMY00EXRGqlFSn62aR3Llq3SsXjfskI5aUhzWq9c8D7udzGl15WYNdxm4aS738m-zbxPsTS4ZtbvALFsahT</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Puri, Atul</creator><creator>Haller, William T.</creator><creator>Netherland, Michael D.</creator><general>Weed Science Society of America</general><general>Cambridge University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20090901</creationdate><title>Cross-Resistance in Fluridone-Resistant Hydrilla to Other Bleaching Herbicides</title><author>Puri, Atul ; Haller, William T. ; Netherland, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b445t-c197f5f3db7a200e3be9368ba0a43addd525d129b313ca3488a9615ee4e8b86f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>application rate</topic><topic>aquatic weed</topic><topic>aquatic weeds</topic><topic>beta-carotene</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>biotypes</topic><topic>Bleaching</topic><topic>Carotenoids</topic><topic>chemical constituents of plants</topic><topic>Chemical control</topic><topic>chlorophyll</topic><topic>Chlorophylls</topic><topic>Cross resistance</topic><topic>effective concentration 50</topic><topic>Enzymes</topic><topic>fluridone</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Herbicide resistance</topic><topic>herbicide-resistant weeds</topic><topic>Herbicides</topic><topic>Hydrilla</topic><topic>Hydrilla verticillata</topic><topic>Invasive species</topic><topic>mesotrione</topic><topic>norflurazon</topic><topic>noxious weeds</topic><topic>Parasitic plants. Weeds</topic><topic>PHYSIOLOGY, CHEMISTRY, AND BIOCHEMISTRY</topic><topic>phytoene</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>pigment content</topic><topic>Pigments</topic><topic>plant pigments</topic><topic>Plants</topic><topic>topramezone</topic><topic>weed control</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puri, Atul</creatorcontrib><creatorcontrib>Haller, William T.</creatorcontrib><creatorcontrib>Netherland, Michael D.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Weed science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puri, Atul</au><au>Haller, William T.</au><au>Netherland, Michael D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-Resistance in Fluridone-Resistant Hydrilla to Other Bleaching Herbicides</atitle><jtitle>Weed science</jtitle><addtitle>Weed sci</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>57</volume><issue>5</issue><spage>482</spage><epage>488</epage><pages>482-488</pages><issn>0043-1745</issn><eissn>1550-2759</eissn><coden>WEESA6</coden><abstract>The development of fluridone resistance by hydrilla has significantly impacted hydrilla management, and research is ongoing to develop alternate herbicides for effective hydrilla control. We determined the potential cross-resistance in fluridone-resistant hydrilla to other bleaching herbicides norflurazon, mesotrione, and topramezone-methyl. Phytoene, β-carotene, and chlorophyll contents as a function of hydrilla biotype and herbicide treatment were evaluated. Hydrilla shoot tips were collected from fluridone-susceptible (S) and -resistant (R) biotypes and exposed to 5, 25, 50, 75, and 100 µg L−1 of herbicide. The susceptible biotype showed an increase in phytoene and a decrease in β-carotene and chlorophyll contents when treated with 5 µg L−1 fluridone, whereas higher doses of fluridone were required to affect these pigments in the resistant biotype. There was no difference in response by S and R biotypes to mesotrione and topramezone-methyl, with both biotypes showing significant affects on pigment contents at 5 µg L−1. Higher doses of norflurazon were required to affect these pigments in the R compared to the S biotype. The S biotype had EC50 values of 11.7, 12.2, and 4.7 µg L−1, whereas the R biotype had EC50 values of 56.6, 41.1, and 41.7 µg L−1 fluridone for phytoene, β-carotene, and chlorophyll contents, respectively. There was no difference in EC50 for phytoene, β-carotene, and chlorophyll values between the hydrilla biotypes for mesotrione and topramezone-methyl herbicides. In fluridone-susceptible and -resistant hydrilla biotypes, EC50 values for phytoene, β-carotene, and chlorophyll were 12.4 to 11.8, 10.2 to 13.2, and 3.1 to 4.6 µg L−1 mesotrione and 12.6 to 13.5, 13.3 to 11.9, and 4.6 to 5.7 µg L−1 topramezone-methyl, respectively. For norflurazon, S and R biotypes had EC50 values of 33.1, 45.4, and 40.6 µg L−1 and 84.6, 81.0, and 92.7 µg L−1 for phytoene, β-carotene, and chlorophyll, respectively. These studies confirmed negative cross-resistance of fluridone-resistant hydrilla to mesotrione and topramezone-methyl and a positive cross-resistance to norflurazon. Nomenclature: Fluridone; mesotrione; norflurazon; topramezone-methyl; hydrilla, Hydrilla verticillata (L.f.) Royle HYLLI.</abstract><cop>810 East 10th Street, Lawrence, KS 66044-8897</cop><pub>Weed Science Society of America</pub><doi>10.1614/WS-09-060.1</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1745
ispartof Weed science, 2009-09, Vol.57 (5), p.482-488
issn 0043-1745
1550-2759
language eng
recordid cdi_proquest_miscellaneous_856769052
source BioOne Complete; Jstor Complete Legacy
subjects application rate
aquatic weed
aquatic weeds
beta-carotene
Biological and medical sciences
Biosynthesis
biotypes
Bleaching
Carotenoids
chemical constituents of plants
Chemical control
chlorophyll
Chlorophylls
Cross resistance
effective concentration 50
Enzymes
fluridone
Fundamental and applied biological sciences. Psychology
Herbicide resistance
herbicide-resistant weeds
Herbicides
Hydrilla
Hydrilla verticillata
Invasive species
mesotrione
norflurazon
noxious weeds
Parasitic plants. Weeds
PHYSIOLOGY, CHEMISTRY, AND BIOCHEMISTRY
phytoene
Phytopathology. Animal pests. Plant and forest protection
pigment content
Pigments
plant pigments
Plants
topramezone
weed control
Weeds
title Cross-Resistance in Fluridone-Resistant Hydrilla to Other Bleaching Herbicides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-Resistance%20in%20Fluridone-Resistant%20Hydrilla%20to%20Other%20Bleaching%20Herbicides&rft.jtitle=Weed%20science&rft.au=Puri,%20Atul&rft.date=2009-09-01&rft.volume=57&rft.issue=5&rft.spage=482&rft.epage=488&rft.pages=482-488&rft.issn=0043-1745&rft.eissn=1550-2759&rft.coden=WEESA6&rft_id=info:doi/10.1614/WS-09-060.1&rft_dat=%3Cjstor_proqu%3E40586860%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856768298&rft_id=info:pmid/&rft_cupid=10_1614_WS_09_060_1&rft_jstor_id=40586860&rfr_iscdi=true