Tectonically driven carbonate ramp evolution at the southern Tethyan shelf: the Lower Eocene succession of the Galala Mountains, Egypt

The succession of the Galala Mountains at the southern Tethyan margin (Eastern Desert, Egypt) provides new data for the evolution of an isolated carbonate platform in the Early Eocene. Since the Late Cretaceous emergence of the Galala platform, its evolution has been controlled strongly by eustatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Facies 2011, Vol.57 (1), p.51-72
Hauptverfasser: Höntzsch, Stefan, Scheibner, Christian, Kuss, Jochen, Marzouk, Akmal M., Rasser, Michael W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 51
container_title Facies
container_volume 57
creator Höntzsch, Stefan
Scheibner, Christian
Kuss, Jochen
Marzouk, Akmal M.
Rasser, Michael W.
description The succession of the Galala Mountains at the southern Tethyan margin (Eastern Desert, Egypt) provides new data for the evolution of an isolated carbonate platform in the Early Eocene. Since the Late Cretaceous emergence of the Galala platform, its evolution has been controlled strongly by eustatic sea-level fluctuations and the tectonic activity along the Syrian Arc-Fold-Belt. Previous studies introduced five platform stages to describe platform evolution from the Maastrichtian (stage A) to the latest Paleocene shift from a platform to ramp morphology (stage E). A first Early Eocene stage F was tentatively introduced but not described in detail. In this study, we continue the work at the Galala platform, focussing on Early Eocene platform evolution, microfacies analysis and the distribution of larger benthic foraminifera on a south-dipping inner ramp to basin transect. We redefine the tentative platform stage F and introduce two new platform stages (stage G and H) by means of the distribution of 13 facies types and syn-depositional tectonism. In the earliest Eocene (stage F, NP 9b–NP 11), facies patterns indicate mainly aggradation of the ramp system. The first occurrence of isolated sandstone beds at the mid ramp reflects a post-Paleocene-Eocene thermal maximum (PETM) reactivation of a Cretaceous fault system, yielding to the tectonic uplift of Mesozoic and Palaeozoic siliciclastics. As a consequence, the Paleocene ramp with pure carbonate deposition shifted to a mixed carbonate-siliciclastic system during stage F. The subsequent platform stage G (NP 11–NP 14a) is characterised by a deepening trend at the mid ramp, resulting in the retrogradation of the platform. The increasing deposition of quartz-rich sandstones at the mid ramp reflects the enhanced erosion of Mesozoic and Palaeozoic deposits. In contrast to the deepening trend at the mid ramp, the deposition of cyclic tidalites reflects a coeval shallowing and the temporarily subaerial exposure of inner ramp environments. This oppositional trend is related to the continuing uplift along the Syrian Arc-Fold-Belt in stage G. Platform stage H (NP 14a–?) demonstrates the termination of Syrian Arc uplift and the recovery from a mixed siliciclastic carbonate platform to pure carbonate deposition.
doi_str_mv 10.1007/s10347-010-0229-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_856768491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>856768491</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-db81bb808469605ee87fdb30e1c73de3effe8f23b72f5695ea264cf3143a6eec3</originalsourceid><addsrcrecordid>eNp1kUFrGzEUhEVJoG6SH9Cb6CWXbvokrVfa3kJw04BDLs5ZaOUne8NaciVtEv-B_u7KdiBQCO8wh_lmeDCEfGVwxQDkj8RA1LICBhVw3lavn8iENYxXteJwQibAJK9aJtvP5EtKTwBcgoAJ-btAm4PvrRmGHV3G_hk9tSZ2wZuMNJrNluJzGMbcB09NpnmNNIWxSPR0gXm9M56mNQ7u58GbhxeMdBYs-gKO1mJK-2hwB_vWDOXofRh9Nr1P3-lstdvmc3LqzJDw4k3PyOOv2eLmdzV_uL27uZ5XRkjI1bJTrOsUqLppG5giKumWnQBkVoolCnQOleOik9xNm3aKhje1dYLVwjSIVpyRy2PvNoY_I6asN32yOAzGYxiTVtNGNqpuWSG__Uc-hTH68pxWnCmhOIcCsSNkY0gpotPb2G9M3GkGer-LPu6iyy56v4t-LRl-zKTC-hXG9-KPQ_8AbjqTKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>821838220</pqid></control><display><type>article</type><title>Tectonically driven carbonate ramp evolution at the southern Tethyan shelf: the Lower Eocene succession of the Galala Mountains, Egypt</title><source>SpringerLink Journals - AutoHoldings</source><creator>Höntzsch, Stefan ; Scheibner, Christian ; Kuss, Jochen ; Marzouk, Akmal M. ; Rasser, Michael W.</creator><creatorcontrib>Höntzsch, Stefan ; Scheibner, Christian ; Kuss, Jochen ; Marzouk, Akmal M. ; Rasser, Michael W.</creatorcontrib><description>The succession of the Galala Mountains at the southern Tethyan margin (Eastern Desert, Egypt) provides new data for the evolution of an isolated carbonate platform in the Early Eocene. Since the Late Cretaceous emergence of the Galala platform, its evolution has been controlled strongly by eustatic sea-level fluctuations and the tectonic activity along the Syrian Arc-Fold-Belt. Previous studies introduced five platform stages to describe platform evolution from the Maastrichtian (stage A) to the latest Paleocene shift from a platform to ramp morphology (stage E). A first Early Eocene stage F was tentatively introduced but not described in detail. In this study, we continue the work at the Galala platform, focussing on Early Eocene platform evolution, microfacies analysis and the distribution of larger benthic foraminifera on a south-dipping inner ramp to basin transect. We redefine the tentative platform stage F and introduce two new platform stages (stage G and H) by means of the distribution of 13 facies types and syn-depositional tectonism. In the earliest Eocene (stage F, NP 9b–NP 11), facies patterns indicate mainly aggradation of the ramp system. The first occurrence of isolated sandstone beds at the mid ramp reflects a post-Paleocene-Eocene thermal maximum (PETM) reactivation of a Cretaceous fault system, yielding to the tectonic uplift of Mesozoic and Palaeozoic siliciclastics. As a consequence, the Paleocene ramp with pure carbonate deposition shifted to a mixed carbonate-siliciclastic system during stage F. The subsequent platform stage G (NP 11–NP 14a) is characterised by a deepening trend at the mid ramp, resulting in the retrogradation of the platform. The increasing deposition of quartz-rich sandstones at the mid ramp reflects the enhanced erosion of Mesozoic and Palaeozoic deposits. In contrast to the deepening trend at the mid ramp, the deposition of cyclic tidalites reflects a coeval shallowing and the temporarily subaerial exposure of inner ramp environments. This oppositional trend is related to the continuing uplift along the Syrian Arc-Fold-Belt in stage G. Platform stage H (NP 14a–?) demonstrates the termination of Syrian Arc uplift and the recovery from a mixed siliciclastic carbonate platform to pure carbonate deposition.</description><identifier>ISSN: 0172-9179</identifier><identifier>EISSN: 1612-4820</identifier><identifier>DOI: 10.1007/s10347-010-0229-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Biogeosciences ; Cretaceous ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Eocene ; Geochemistry ; Geological time ; Mesozoic ; Mountains ; Original Article ; Paleocene ; Paleoecology ; Paleontology ; Paleozoic ; Plate tectonics ; Sandstone ; Sedimentology</subject><ispartof>Facies, 2011, Vol.57 (1), p.51-72</ispartof><rights>Springer-Verlag 2010</rights><rights>Springer-Verlag 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-db81bb808469605ee87fdb30e1c73de3effe8f23b72f5695ea264cf3143a6eec3</citedby><cites>FETCH-LOGICAL-a370t-db81bb808469605ee87fdb30e1c73de3effe8f23b72f5695ea264cf3143a6eec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10347-010-0229-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10347-010-0229-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Höntzsch, Stefan</creatorcontrib><creatorcontrib>Scheibner, Christian</creatorcontrib><creatorcontrib>Kuss, Jochen</creatorcontrib><creatorcontrib>Marzouk, Akmal M.</creatorcontrib><creatorcontrib>Rasser, Michael W.</creatorcontrib><title>Tectonically driven carbonate ramp evolution at the southern Tethyan shelf: the Lower Eocene succession of the Galala Mountains, Egypt</title><title>Facies</title><addtitle>Facies</addtitle><description>The succession of the Galala Mountains at the southern Tethyan margin (Eastern Desert, Egypt) provides new data for the evolution of an isolated carbonate platform in the Early Eocene. Since the Late Cretaceous emergence of the Galala platform, its evolution has been controlled strongly by eustatic sea-level fluctuations and the tectonic activity along the Syrian Arc-Fold-Belt. Previous studies introduced five platform stages to describe platform evolution from the Maastrichtian (stage A) to the latest Paleocene shift from a platform to ramp morphology (stage E). A first Early Eocene stage F was tentatively introduced but not described in detail. In this study, we continue the work at the Galala platform, focussing on Early Eocene platform evolution, microfacies analysis and the distribution of larger benthic foraminifera on a south-dipping inner ramp to basin transect. We redefine the tentative platform stage F and introduce two new platform stages (stage G and H) by means of the distribution of 13 facies types and syn-depositional tectonism. In the earliest Eocene (stage F, NP 9b–NP 11), facies patterns indicate mainly aggradation of the ramp system. The first occurrence of isolated sandstone beds at the mid ramp reflects a post-Paleocene-Eocene thermal maximum (PETM) reactivation of a Cretaceous fault system, yielding to the tectonic uplift of Mesozoic and Palaeozoic siliciclastics. As a consequence, the Paleocene ramp with pure carbonate deposition shifted to a mixed carbonate-siliciclastic system during stage F. The subsequent platform stage G (NP 11–NP 14a) is characterised by a deepening trend at the mid ramp, resulting in the retrogradation of the platform. The increasing deposition of quartz-rich sandstones at the mid ramp reflects the enhanced erosion of Mesozoic and Palaeozoic deposits. In contrast to the deepening trend at the mid ramp, the deposition of cyclic tidalites reflects a coeval shallowing and the temporarily subaerial exposure of inner ramp environments. This oppositional trend is related to the continuing uplift along the Syrian Arc-Fold-Belt in stage G. Platform stage H (NP 14a–?) demonstrates the termination of Syrian Arc uplift and the recovery from a mixed siliciclastic carbonate platform to pure carbonate deposition.</description><subject>Biogeosciences</subject><subject>Cretaceous</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Eocene</subject><subject>Geochemistry</subject><subject>Geological time</subject><subject>Mesozoic</subject><subject>Mountains</subject><subject>Original Article</subject><subject>Paleocene</subject><subject>Paleoecology</subject><subject>Paleontology</subject><subject>Paleozoic</subject><subject>Plate tectonics</subject><subject>Sandstone</subject><subject>Sedimentology</subject><issn>0172-9179</issn><issn>1612-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUFrGzEUhEVJoG6SH9Cb6CWXbvokrVfa3kJw04BDLs5ZaOUne8NaciVtEv-B_u7KdiBQCO8wh_lmeDCEfGVwxQDkj8RA1LICBhVw3lavn8iENYxXteJwQibAJK9aJtvP5EtKTwBcgoAJ-btAm4PvrRmGHV3G_hk9tSZ2wZuMNJrNluJzGMbcB09NpnmNNIWxSPR0gXm9M56mNQ7u58GbhxeMdBYs-gKO1mJK-2hwB_vWDOXofRh9Nr1P3-lstdvmc3LqzJDw4k3PyOOv2eLmdzV_uL27uZ5XRkjI1bJTrOsUqLppG5giKumWnQBkVoolCnQOleOik9xNm3aKhje1dYLVwjSIVpyRy2PvNoY_I6asN32yOAzGYxiTVtNGNqpuWSG__Uc-hTH68pxWnCmhOIcCsSNkY0gpotPb2G9M3GkGer-LPu6iyy56v4t-LRl-zKTC-hXG9-KPQ_8AbjqTKg</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Höntzsch, Stefan</creator><creator>Scheibner, Christian</creator><creator>Kuss, Jochen</creator><creator>Marzouk, Akmal M.</creator><creator>Rasser, Michael W.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2011</creationdate><title>Tectonically driven carbonate ramp evolution at the southern Tethyan shelf: the Lower Eocene succession of the Galala Mountains, Egypt</title><author>Höntzsch, Stefan ; Scheibner, Christian ; Kuss, Jochen ; Marzouk, Akmal M. ; Rasser, Michael W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-db81bb808469605ee87fdb30e1c73de3effe8f23b72f5695ea264cf3143a6eec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biogeosciences</topic><topic>Cretaceous</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Eocene</topic><topic>Geochemistry</topic><topic>Geological time</topic><topic>Mesozoic</topic><topic>Mountains</topic><topic>Original Article</topic><topic>Paleocene</topic><topic>Paleoecology</topic><topic>Paleontology</topic><topic>Paleozoic</topic><topic>Plate tectonics</topic><topic>Sandstone</topic><topic>Sedimentology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Höntzsch, Stefan</creatorcontrib><creatorcontrib>Scheibner, Christian</creatorcontrib><creatorcontrib>Kuss, Jochen</creatorcontrib><creatorcontrib>Marzouk, Akmal M.</creatorcontrib><creatorcontrib>Rasser, Michael W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Facies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Höntzsch, Stefan</au><au>Scheibner, Christian</au><au>Kuss, Jochen</au><au>Marzouk, Akmal M.</au><au>Rasser, Michael W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tectonically driven carbonate ramp evolution at the southern Tethyan shelf: the Lower Eocene succession of the Galala Mountains, Egypt</atitle><jtitle>Facies</jtitle><stitle>Facies</stitle><date>2011</date><risdate>2011</risdate><volume>57</volume><issue>1</issue><spage>51</spage><epage>72</epage><pages>51-72</pages><issn>0172-9179</issn><eissn>1612-4820</eissn><abstract>The succession of the Galala Mountains at the southern Tethyan margin (Eastern Desert, Egypt) provides new data for the evolution of an isolated carbonate platform in the Early Eocene. Since the Late Cretaceous emergence of the Galala platform, its evolution has been controlled strongly by eustatic sea-level fluctuations and the tectonic activity along the Syrian Arc-Fold-Belt. Previous studies introduced five platform stages to describe platform evolution from the Maastrichtian (stage A) to the latest Paleocene shift from a platform to ramp morphology (stage E). A first Early Eocene stage F was tentatively introduced but not described in detail. In this study, we continue the work at the Galala platform, focussing on Early Eocene platform evolution, microfacies analysis and the distribution of larger benthic foraminifera on a south-dipping inner ramp to basin transect. We redefine the tentative platform stage F and introduce two new platform stages (stage G and H) by means of the distribution of 13 facies types and syn-depositional tectonism. In the earliest Eocene (stage F, NP 9b–NP 11), facies patterns indicate mainly aggradation of the ramp system. The first occurrence of isolated sandstone beds at the mid ramp reflects a post-Paleocene-Eocene thermal maximum (PETM) reactivation of a Cretaceous fault system, yielding to the tectonic uplift of Mesozoic and Palaeozoic siliciclastics. As a consequence, the Paleocene ramp with pure carbonate deposition shifted to a mixed carbonate-siliciclastic system during stage F. The subsequent platform stage G (NP 11–NP 14a) is characterised by a deepening trend at the mid ramp, resulting in the retrogradation of the platform. The increasing deposition of quartz-rich sandstones at the mid ramp reflects the enhanced erosion of Mesozoic and Palaeozoic deposits. In contrast to the deepening trend at the mid ramp, the deposition of cyclic tidalites reflects a coeval shallowing and the temporarily subaerial exposure of inner ramp environments. This oppositional trend is related to the continuing uplift along the Syrian Arc-Fold-Belt in stage G. Platform stage H (NP 14a–?) demonstrates the termination of Syrian Arc uplift and the recovery from a mixed siliciclastic carbonate platform to pure carbonate deposition.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10347-010-0229-x</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0172-9179
ispartof Facies, 2011, Vol.57 (1), p.51-72
issn 0172-9179
1612-4820
language eng
recordid cdi_proquest_miscellaneous_856768491
source SpringerLink Journals - AutoHoldings
subjects Biogeosciences
Cretaceous
Earth and Environmental Science
Earth Sciences
Ecology
Eocene
Geochemistry
Geological time
Mesozoic
Mountains
Original Article
Paleocene
Paleoecology
Paleontology
Paleozoic
Plate tectonics
Sandstone
Sedimentology
title Tectonically driven carbonate ramp evolution at the southern Tethyan shelf: the Lower Eocene succession of the Galala Mountains, Egypt
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A41%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tectonically%20driven%20carbonate%20ramp%20evolution%20at%20the%20southern%20Tethyan%20shelf:%20the%20Lower%20Eocene%20succession%20of%20the%20Galala%20Mountains,%20Egypt&rft.jtitle=Facies&rft.au=H%C3%B6ntzsch,%20Stefan&rft.date=2011&rft.volume=57&rft.issue=1&rft.spage=51&rft.epage=72&rft.pages=51-72&rft.issn=0172-9179&rft.eissn=1612-4820&rft_id=info:doi/10.1007/s10347-010-0229-x&rft_dat=%3Cproquest_cross%3E856768491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=821838220&rft_id=info:pmid/&rfr_iscdi=true