Autotrophic ammonia oxidation by soil thaumarchaea

Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-10, Vol.107 (40), p.17240-17245
Hauptverfasser: Zhang, Li-Mei, Offre, Pierre R., He, Ji-Zheng, Verhamme, Daniel T., Nicol, Graeme W., Prosser, James I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17245
container_issue 40
container_start_page 17240
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Zhang, Li-Mei
Offre, Pierre R.
He, Ji-Zheng
Verhamme, Daniel T.
Nicol, Graeme W.
Prosser, James I.
description Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, but the relative importance of bacteria and archaea in soil nitrification is unclear and it is believed that soil archaeal ammonia oxidizers may use organic carbon, rather than growing autotrophically. In this soil microcosm study, stable isotope probing was used to demonstrate incorporation of ¹³C-enriched carbon dioxide into the genomes of thaumarchaea possessing two functional genes: amoA, encoding a subunit of ammonia monooxygenase that catalyses the first step in ammonia oxidation; and hcd, a key gene in the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle, which has been found so far only in archaea. Nitrification was accompanied by increases in archaeal amoA gene abundance and changes in amoA gene diversity, but no change was observed in bacterial amoA genes. Archaeal, but not bacterial, amoA genes were also detected in ¹³C-labeled DNA, demonstrating inorganic CO₂ fixation by archaeal, but not bacterial, ammonia oxidizers. Autotrophic archaeal ammonia oxidation was further supported by coordinate increases in amoA and hcd gene abundance in ¹³C-labeled DNA. The results therefore provide direct evidence for a role for archaea in soil ammonia oxidation and demonstrate autotrophic growth of ammonia oxidizing archaea in soil.
doi_str_mv 10.1073/pnas.1004947107
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856765459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20779947</jstor_id><sourcerecordid>20779947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-7720a9d8faa0925390a13f66d9be40427d579c01aea812c029a252eaad74b0863</originalsourceid><addsrcrecordid>eNpdkc1LwzAUwIMobk7PnpTixVP1JU2a5iKM4RcIXvQc3trMZbTNTFpx_70Zm049JSS_93tfhJxSuKIgs-tliyHegCsu48MeGVJQNM25gn0yBGAyLTjjA3IUwgIAlCjgkAwYFEIIlQ0JG_ed67xbzm2ZYNO41mLiPm2FnXVtMl0lwdk66ebYN-jLORo8JgczrIM52Z4j8np3-zJ5SJ-e7x8n46e0FDnvUikZoKqKGSIoJjIFSLNZnldqajhwJishVQk0GgvKSmAKmWAGsZJ8CkWejcjNxrvsp42pStN2Hmu99DZWstIOrf7709q5fnMfmilBeQ5RcLkVePfem9DpxobS1DW2xvVBFyKXueBxDiNy8Y9cuN63sTsthaQqFicjdL2BSu9C8Gb2UwoFvd6GXm9D77YRI85_d_DDf48_AskWWEfudFLzqJSMr5s42yCL0Dn_SyGlimmyLyOymZs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>757190297</pqid></control><display><type>article</type><title>Autotrophic ammonia oxidation by soil thaumarchaea</title><source>PubMed Central (Open access)</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Zhang, Li-Mei ; Offre, Pierre R. ; He, Ji-Zheng ; Verhamme, Daniel T. ; Nicol, Graeme W. ; Prosser, James I.</creator><creatorcontrib>Zhang, Li-Mei ; Offre, Pierre R. ; He, Ji-Zheng ; Verhamme, Daniel T. ; Nicol, Graeme W. ; Prosser, James I.</creatorcontrib><description>Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, but the relative importance of bacteria and archaea in soil nitrification is unclear and it is believed that soil archaeal ammonia oxidizers may use organic carbon, rather than growing autotrophically. In this soil microcosm study, stable isotope probing was used to demonstrate incorporation of ¹³C-enriched carbon dioxide into the genomes of thaumarchaea possessing two functional genes: amoA, encoding a subunit of ammonia monooxygenase that catalyses the first step in ammonia oxidation; and hcd, a key gene in the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle, which has been found so far only in archaea. Nitrification was accompanied by increases in archaeal amoA gene abundance and changes in amoA gene diversity, but no change was observed in bacterial amoA genes. Archaeal, but not bacterial, amoA genes were also detected in ¹³C-labeled DNA, demonstrating inorganic CO₂ fixation by archaeal, but not bacterial, ammonia oxidizers. Autotrophic archaeal ammonia oxidation was further supported by coordinate increases in amoA and hcd gene abundance in ¹³C-labeled DNA. The results therefore provide direct evidence for a role for archaea in soil ammonia oxidation and demonstrate autotrophic growth of ammonia oxidizing archaea in soil.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1004947107</identifier><identifier>PMID: 20855593</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acid soils ; Agricultural soils ; Agrology ; Ammonia ; Ammonia - metabolism ; Archaea ; Archaea - genetics ; Archaea - growth &amp; development ; Archaea - metabolism ; Autotrophic Processes - physiology ; Bacteria ; Biological Sciences ; DNA, Archaeal - genetics ; DNA, Archaeal - metabolism ; Genes, Archaeal ; Genes, Bacterial ; Greenhouse gases ; Isotope Labeling ; Isotopes ; Microcosms ; Molecular Sequence Data ; Nitric oxide ; Nitrification ; Nitrogen - metabolism ; Oxidation ; Oxidation-Reduction ; Oxidizers ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Soil Microbiology ; Soils</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-10, Vol.107 (40), p.17240-17245</ispartof><rights>Copyright National Academy of Sciences Oct 5, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-7720a9d8faa0925390a13f66d9be40427d579c01aea812c029a252eaad74b0863</citedby><cites>FETCH-LOGICAL-c564t-7720a9d8faa0925390a13f66d9be40427d579c01aea812c029a252eaad74b0863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20779947$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20779947$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20855593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Li-Mei</creatorcontrib><creatorcontrib>Offre, Pierre R.</creatorcontrib><creatorcontrib>He, Ji-Zheng</creatorcontrib><creatorcontrib>Verhamme, Daniel T.</creatorcontrib><creatorcontrib>Nicol, Graeme W.</creatorcontrib><creatorcontrib>Prosser, James I.</creatorcontrib><title>Autotrophic ammonia oxidation by soil thaumarchaea</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, but the relative importance of bacteria and archaea in soil nitrification is unclear and it is believed that soil archaeal ammonia oxidizers may use organic carbon, rather than growing autotrophically. In this soil microcosm study, stable isotope probing was used to demonstrate incorporation of ¹³C-enriched carbon dioxide into the genomes of thaumarchaea possessing two functional genes: amoA, encoding a subunit of ammonia monooxygenase that catalyses the first step in ammonia oxidation; and hcd, a key gene in the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle, which has been found so far only in archaea. Nitrification was accompanied by increases in archaeal amoA gene abundance and changes in amoA gene diversity, but no change was observed in bacterial amoA genes. Archaeal, but not bacterial, amoA genes were also detected in ¹³C-labeled DNA, demonstrating inorganic CO₂ fixation by archaeal, but not bacterial, ammonia oxidizers. Autotrophic archaeal ammonia oxidation was further supported by coordinate increases in amoA and hcd gene abundance in ¹³C-labeled DNA. The results therefore provide direct evidence for a role for archaea in soil ammonia oxidation and demonstrate autotrophic growth of ammonia oxidizing archaea in soil.</description><subject>Acid soils</subject><subject>Agricultural soils</subject><subject>Agrology</subject><subject>Ammonia</subject><subject>Ammonia - metabolism</subject><subject>Archaea</subject><subject>Archaea - genetics</subject><subject>Archaea - growth &amp; development</subject><subject>Archaea - metabolism</subject><subject>Autotrophic Processes - physiology</subject><subject>Bacteria</subject><subject>Biological Sciences</subject><subject>DNA, Archaeal - genetics</subject><subject>DNA, Archaeal - metabolism</subject><subject>Genes, Archaeal</subject><subject>Genes, Bacterial</subject><subject>Greenhouse gases</subject><subject>Isotope Labeling</subject><subject>Isotopes</subject><subject>Microcosms</subject><subject>Molecular Sequence Data</subject><subject>Nitric oxide</subject><subject>Nitrification</subject><subject>Nitrogen - metabolism</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidizers</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Soil Microbiology</subject><subject>Soils</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1LwzAUwIMobk7PnpTixVP1JU2a5iKM4RcIXvQc3trMZbTNTFpx_70Zm049JSS_93tfhJxSuKIgs-tliyHegCsu48MeGVJQNM25gn0yBGAyLTjjA3IUwgIAlCjgkAwYFEIIlQ0JG_ed67xbzm2ZYNO41mLiPm2FnXVtMl0lwdk66ebYN-jLORo8JgczrIM52Z4j8np3-zJ5SJ-e7x8n46e0FDnvUikZoKqKGSIoJjIFSLNZnldqajhwJishVQk0GgvKSmAKmWAGsZJ8CkWejcjNxrvsp42pStN2Hmu99DZWstIOrf7709q5fnMfmilBeQ5RcLkVePfem9DpxobS1DW2xvVBFyKXueBxDiNy8Y9cuN63sTsthaQqFicjdL2BSu9C8Gb2UwoFvd6GXm9D77YRI85_d_DDf48_AskWWEfudFLzqJSMr5s42yCL0Dn_SyGlimmyLyOymZs</recordid><startdate>20101005</startdate><enddate>20101005</enddate><creator>Zhang, Li-Mei</creator><creator>Offre, Pierre R.</creator><creator>He, Ji-Zheng</creator><creator>Verhamme, Daniel T.</creator><creator>Nicol, Graeme W.</creator><creator>Prosser, James I.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20101005</creationdate><title>Autotrophic ammonia oxidation by soil thaumarchaea</title><author>Zhang, Li-Mei ; Offre, Pierre R. ; He, Ji-Zheng ; Verhamme, Daniel T. ; Nicol, Graeme W. ; Prosser, James I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-7720a9d8faa0925390a13f66d9be40427d579c01aea812c029a252eaad74b0863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acid soils</topic><topic>Agricultural soils</topic><topic>Agrology</topic><topic>Ammonia</topic><topic>Ammonia - metabolism</topic><topic>Archaea</topic><topic>Archaea - genetics</topic><topic>Archaea - growth &amp; development</topic><topic>Archaea - metabolism</topic><topic>Autotrophic Processes - physiology</topic><topic>Bacteria</topic><topic>Biological Sciences</topic><topic>DNA, Archaeal - genetics</topic><topic>DNA, Archaeal - metabolism</topic><topic>Genes, Archaeal</topic><topic>Genes, Bacterial</topic><topic>Greenhouse gases</topic><topic>Isotope Labeling</topic><topic>Isotopes</topic><topic>Microcosms</topic><topic>Molecular Sequence Data</topic><topic>Nitric oxide</topic><topic>Nitrification</topic><topic>Nitrogen - metabolism</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidizers</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Soil Microbiology</topic><topic>Soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Li-Mei</creatorcontrib><creatorcontrib>Offre, Pierre R.</creatorcontrib><creatorcontrib>He, Ji-Zheng</creatorcontrib><creatorcontrib>Verhamme, Daniel T.</creatorcontrib><creatorcontrib>Nicol, Graeme W.</creatorcontrib><creatorcontrib>Prosser, James I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Li-Mei</au><au>Offre, Pierre R.</au><au>He, Ji-Zheng</au><au>Verhamme, Daniel T.</au><au>Nicol, Graeme W.</au><au>Prosser, James I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autotrophic ammonia oxidation by soil thaumarchaea</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-10-05</date><risdate>2010</risdate><volume>107</volume><issue>40</issue><spage>17240</spage><epage>17245</epage><pages>17240-17245</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, but the relative importance of bacteria and archaea in soil nitrification is unclear and it is believed that soil archaeal ammonia oxidizers may use organic carbon, rather than growing autotrophically. In this soil microcosm study, stable isotope probing was used to demonstrate incorporation of ¹³C-enriched carbon dioxide into the genomes of thaumarchaea possessing two functional genes: amoA, encoding a subunit of ammonia monooxygenase that catalyses the first step in ammonia oxidation; and hcd, a key gene in the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle, which has been found so far only in archaea. Nitrification was accompanied by increases in archaeal amoA gene abundance and changes in amoA gene diversity, but no change was observed in bacterial amoA genes. Archaeal, but not bacterial, amoA genes were also detected in ¹³C-labeled DNA, demonstrating inorganic CO₂ fixation by archaeal, but not bacterial, ammonia oxidizers. Autotrophic archaeal ammonia oxidation was further supported by coordinate increases in amoA and hcd gene abundance in ¹³C-labeled DNA. The results therefore provide direct evidence for a role for archaea in soil ammonia oxidation and demonstrate autotrophic growth of ammonia oxidizing archaea in soil.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20855593</pmid><doi>10.1073/pnas.1004947107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-10, Vol.107 (40), p.17240-17245
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_856765459
source PubMed Central (Open access); MEDLINE; Full-Text Journals in Chemistry (Open access); Alma/SFX Local Collection; JSTOR
subjects Acid soils
Agricultural soils
Agrology
Ammonia
Ammonia - metabolism
Archaea
Archaea - genetics
Archaea - growth & development
Archaea - metabolism
Autotrophic Processes - physiology
Bacteria
Biological Sciences
DNA, Archaeal - genetics
DNA, Archaeal - metabolism
Genes, Archaeal
Genes, Bacterial
Greenhouse gases
Isotope Labeling
Isotopes
Microcosms
Molecular Sequence Data
Nitric oxide
Nitrification
Nitrogen - metabolism
Oxidation
Oxidation-Reduction
Oxidizers
Oxidoreductases - genetics
Oxidoreductases - metabolism
Soil Microbiology
Soils
title Autotrophic ammonia oxidation by soil thaumarchaea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autotrophic%20ammonia%20oxidation%20by%20soil%20thaumarchaea&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhang,%20Li-Mei&rft.date=2010-10-05&rft.volume=107&rft.issue=40&rft.spage=17240&rft.epage=17245&rft.pages=17240-17245&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1004947107&rft_dat=%3Cjstor_proqu%3E20779947%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=757190297&rft_id=info:pmid/20855593&rft_jstor_id=20779947&rfr_iscdi=true