Autotrophic ammonia oxidation by soil thaumarchaea
Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be pe...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-10, Vol.107 (40), p.17240-17245 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17245 |
---|---|
container_issue | 40 |
container_start_page | 17240 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Zhang, Li-Mei Offre, Pierre R. He, Ji-Zheng Verhamme, Daniel T. Nicol, Graeme W. Prosser, James I. |
description | Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, but the relative importance of bacteria and archaea in soil nitrification is unclear and it is believed that soil archaeal ammonia oxidizers may use organic carbon, rather than growing autotrophically. In this soil microcosm study, stable isotope probing was used to demonstrate incorporation of ¹³C-enriched carbon dioxide into the genomes of thaumarchaea possessing two functional genes: amoA, encoding a subunit of ammonia monooxygenase that catalyses the first step in ammonia oxidation; and hcd, a key gene in the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle, which has been found so far only in archaea. Nitrification was accompanied by increases in archaeal amoA gene abundance and changes in amoA gene diversity, but no change was observed in bacterial amoA genes. Archaeal, but not bacterial, amoA genes were also detected in ¹³C-labeled DNA, demonstrating inorganic CO₂ fixation by archaeal, but not bacterial, ammonia oxidizers. Autotrophic archaeal ammonia oxidation was further supported by coordinate increases in amoA and hcd gene abundance in ¹³C-labeled DNA. The results therefore provide direct evidence for a role for archaea in soil ammonia oxidation and demonstrate autotrophic growth of ammonia oxidizing archaea in soil. |
doi_str_mv | 10.1073/pnas.1004947107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856765459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20779947</jstor_id><sourcerecordid>20779947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-7720a9d8faa0925390a13f66d9be40427d579c01aea812c029a252eaad74b0863</originalsourceid><addsrcrecordid>eNpdkc1LwzAUwIMobk7PnpTixVP1JU2a5iKM4RcIXvQc3trMZbTNTFpx_70Zm049JSS_93tfhJxSuKIgs-tliyHegCsu48MeGVJQNM25gn0yBGAyLTjjA3IUwgIAlCjgkAwYFEIIlQ0JG_ed67xbzm2ZYNO41mLiPm2FnXVtMl0lwdk66ebYN-jLORo8JgczrIM52Z4j8np3-zJ5SJ-e7x8n46e0FDnvUikZoKqKGSIoJjIFSLNZnldqajhwJishVQk0GgvKSmAKmWAGsZJ8CkWejcjNxrvsp42pStN2Hmu99DZWstIOrf7709q5fnMfmilBeQ5RcLkVePfem9DpxobS1DW2xvVBFyKXueBxDiNy8Y9cuN63sTsthaQqFicjdL2BSu9C8Gb2UwoFvd6GXm9D77YRI85_d_DDf48_AskWWEfudFLzqJSMr5s42yCL0Dn_SyGlimmyLyOymZs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>757190297</pqid></control><display><type>article</type><title>Autotrophic ammonia oxidation by soil thaumarchaea</title><source>PubMed Central (Open access)</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Alma/SFX Local Collection</source><source>JSTOR</source><creator>Zhang, Li-Mei ; Offre, Pierre R. ; He, Ji-Zheng ; Verhamme, Daniel T. ; Nicol, Graeme W. ; Prosser, James I.</creator><creatorcontrib>Zhang, Li-Mei ; Offre, Pierre R. ; He, Ji-Zheng ; Verhamme, Daniel T. ; Nicol, Graeme W. ; Prosser, James I.</creatorcontrib><description>Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, but the relative importance of bacteria and archaea in soil nitrification is unclear and it is believed that soil archaeal ammonia oxidizers may use organic carbon, rather than growing autotrophically. In this soil microcosm study, stable isotope probing was used to demonstrate incorporation of ¹³C-enriched carbon dioxide into the genomes of thaumarchaea possessing two functional genes: amoA, encoding a subunit of ammonia monooxygenase that catalyses the first step in ammonia oxidation; and hcd, a key gene in the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle, which has been found so far only in archaea. Nitrification was accompanied by increases in archaeal amoA gene abundance and changes in amoA gene diversity, but no change was observed in bacterial amoA genes. Archaeal, but not bacterial, amoA genes were also detected in ¹³C-labeled DNA, demonstrating inorganic CO₂ fixation by archaeal, but not bacterial, ammonia oxidizers. Autotrophic archaeal ammonia oxidation was further supported by coordinate increases in amoA and hcd gene abundance in ¹³C-labeled DNA. The results therefore provide direct evidence for a role for archaea in soil ammonia oxidation and demonstrate autotrophic growth of ammonia oxidizing archaea in soil.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1004947107</identifier><identifier>PMID: 20855593</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acid soils ; Agricultural soils ; Agrology ; Ammonia ; Ammonia - metabolism ; Archaea ; Archaea - genetics ; Archaea - growth & development ; Archaea - metabolism ; Autotrophic Processes - physiology ; Bacteria ; Biological Sciences ; DNA, Archaeal - genetics ; DNA, Archaeal - metabolism ; Genes, Archaeal ; Genes, Bacterial ; Greenhouse gases ; Isotope Labeling ; Isotopes ; Microcosms ; Molecular Sequence Data ; Nitric oxide ; Nitrification ; Nitrogen - metabolism ; Oxidation ; Oxidation-Reduction ; Oxidizers ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Soil Microbiology ; Soils</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-10, Vol.107 (40), p.17240-17245</ispartof><rights>Copyright National Academy of Sciences Oct 5, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-7720a9d8faa0925390a13f66d9be40427d579c01aea812c029a252eaad74b0863</citedby><cites>FETCH-LOGICAL-c564t-7720a9d8faa0925390a13f66d9be40427d579c01aea812c029a252eaad74b0863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20779947$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20779947$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20855593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Li-Mei</creatorcontrib><creatorcontrib>Offre, Pierre R.</creatorcontrib><creatorcontrib>He, Ji-Zheng</creatorcontrib><creatorcontrib>Verhamme, Daniel T.</creatorcontrib><creatorcontrib>Nicol, Graeme W.</creatorcontrib><creatorcontrib>Prosser, James I.</creatorcontrib><title>Autotrophic ammonia oxidation by soil thaumarchaea</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, but the relative importance of bacteria and archaea in soil nitrification is unclear and it is believed that soil archaeal ammonia oxidizers may use organic carbon, rather than growing autotrophically. In this soil microcosm study, stable isotope probing was used to demonstrate incorporation of ¹³C-enriched carbon dioxide into the genomes of thaumarchaea possessing two functional genes: amoA, encoding a subunit of ammonia monooxygenase that catalyses the first step in ammonia oxidation; and hcd, a key gene in the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle, which has been found so far only in archaea. Nitrification was accompanied by increases in archaeal amoA gene abundance and changes in amoA gene diversity, but no change was observed in bacterial amoA genes. Archaeal, but not bacterial, amoA genes were also detected in ¹³C-labeled DNA, demonstrating inorganic CO₂ fixation by archaeal, but not bacterial, ammonia oxidizers. Autotrophic archaeal ammonia oxidation was further supported by coordinate increases in amoA and hcd gene abundance in ¹³C-labeled DNA. The results therefore provide direct evidence for a role for archaea in soil ammonia oxidation and demonstrate autotrophic growth of ammonia oxidizing archaea in soil.</description><subject>Acid soils</subject><subject>Agricultural soils</subject><subject>Agrology</subject><subject>Ammonia</subject><subject>Ammonia - metabolism</subject><subject>Archaea</subject><subject>Archaea - genetics</subject><subject>Archaea - growth & development</subject><subject>Archaea - metabolism</subject><subject>Autotrophic Processes - physiology</subject><subject>Bacteria</subject><subject>Biological Sciences</subject><subject>DNA, Archaeal - genetics</subject><subject>DNA, Archaeal - metabolism</subject><subject>Genes, Archaeal</subject><subject>Genes, Bacterial</subject><subject>Greenhouse gases</subject><subject>Isotope Labeling</subject><subject>Isotopes</subject><subject>Microcosms</subject><subject>Molecular Sequence Data</subject><subject>Nitric oxide</subject><subject>Nitrification</subject><subject>Nitrogen - metabolism</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidizers</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Soil Microbiology</subject><subject>Soils</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1LwzAUwIMobk7PnpTixVP1JU2a5iKM4RcIXvQc3trMZbTNTFpx_70Zm049JSS_93tfhJxSuKIgs-tliyHegCsu48MeGVJQNM25gn0yBGAyLTjjA3IUwgIAlCjgkAwYFEIIlQ0JG_ed67xbzm2ZYNO41mLiPm2FnXVtMl0lwdk66ebYN-jLORo8JgczrIM52Z4j8np3-zJ5SJ-e7x8n46e0FDnvUikZoKqKGSIoJjIFSLNZnldqajhwJishVQk0GgvKSmAKmWAGsZJ8CkWejcjNxrvsp42pStN2Hmu99DZWstIOrf7709q5fnMfmilBeQ5RcLkVePfem9DpxobS1DW2xvVBFyKXueBxDiNy8Y9cuN63sTsthaQqFicjdL2BSu9C8Gb2UwoFvd6GXm9D77YRI85_d_DDf48_AskWWEfudFLzqJSMr5s42yCL0Dn_SyGlimmyLyOymZs</recordid><startdate>20101005</startdate><enddate>20101005</enddate><creator>Zhang, Li-Mei</creator><creator>Offre, Pierre R.</creator><creator>He, Ji-Zheng</creator><creator>Verhamme, Daniel T.</creator><creator>Nicol, Graeme W.</creator><creator>Prosser, James I.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20101005</creationdate><title>Autotrophic ammonia oxidation by soil thaumarchaea</title><author>Zhang, Li-Mei ; Offre, Pierre R. ; He, Ji-Zheng ; Verhamme, Daniel T. ; Nicol, Graeme W. ; Prosser, James I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-7720a9d8faa0925390a13f66d9be40427d579c01aea812c029a252eaad74b0863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acid soils</topic><topic>Agricultural soils</topic><topic>Agrology</topic><topic>Ammonia</topic><topic>Ammonia - metabolism</topic><topic>Archaea</topic><topic>Archaea - genetics</topic><topic>Archaea - growth & development</topic><topic>Archaea - metabolism</topic><topic>Autotrophic Processes - physiology</topic><topic>Bacteria</topic><topic>Biological Sciences</topic><topic>DNA, Archaeal - genetics</topic><topic>DNA, Archaeal - metabolism</topic><topic>Genes, Archaeal</topic><topic>Genes, Bacterial</topic><topic>Greenhouse gases</topic><topic>Isotope Labeling</topic><topic>Isotopes</topic><topic>Microcosms</topic><topic>Molecular Sequence Data</topic><topic>Nitric oxide</topic><topic>Nitrification</topic><topic>Nitrogen - metabolism</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidizers</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Soil Microbiology</topic><topic>Soils</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Li-Mei</creatorcontrib><creatorcontrib>Offre, Pierre R.</creatorcontrib><creatorcontrib>He, Ji-Zheng</creatorcontrib><creatorcontrib>Verhamme, Daniel T.</creatorcontrib><creatorcontrib>Nicol, Graeme W.</creatorcontrib><creatorcontrib>Prosser, James I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Li-Mei</au><au>Offre, Pierre R.</au><au>He, Ji-Zheng</au><au>Verhamme, Daniel T.</au><au>Nicol, Graeme W.</au><au>Prosser, James I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autotrophic ammonia oxidation by soil thaumarchaea</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-10-05</date><risdate>2010</risdate><volume>107</volume><issue>40</issue><spage>17240</spage><epage>17245</epage><pages>17240-17245</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, but the relative importance of bacteria and archaea in soil nitrification is unclear and it is believed that soil archaeal ammonia oxidizers may use organic carbon, rather than growing autotrophically. In this soil microcosm study, stable isotope probing was used to demonstrate incorporation of ¹³C-enriched carbon dioxide into the genomes of thaumarchaea possessing two functional genes: amoA, encoding a subunit of ammonia monooxygenase that catalyses the first step in ammonia oxidation; and hcd, a key gene in the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle, which has been found so far only in archaea. Nitrification was accompanied by increases in archaeal amoA gene abundance and changes in amoA gene diversity, but no change was observed in bacterial amoA genes. Archaeal, but not bacterial, amoA genes were also detected in ¹³C-labeled DNA, demonstrating inorganic CO₂ fixation by archaeal, but not bacterial, ammonia oxidizers. Autotrophic archaeal ammonia oxidation was further supported by coordinate increases in amoA and hcd gene abundance in ¹³C-labeled DNA. The results therefore provide direct evidence for a role for archaea in soil ammonia oxidation and demonstrate autotrophic growth of ammonia oxidizing archaea in soil.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20855593</pmid><doi>10.1073/pnas.1004947107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-10, Vol.107 (40), p.17240-17245 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_856765459 |
source | PubMed Central (Open access); MEDLINE; Full-Text Journals in Chemistry (Open access); Alma/SFX Local Collection; JSTOR |
subjects | Acid soils Agricultural soils Agrology Ammonia Ammonia - metabolism Archaea Archaea - genetics Archaea - growth & development Archaea - metabolism Autotrophic Processes - physiology Bacteria Biological Sciences DNA, Archaeal - genetics DNA, Archaeal - metabolism Genes, Archaeal Genes, Bacterial Greenhouse gases Isotope Labeling Isotopes Microcosms Molecular Sequence Data Nitric oxide Nitrification Nitrogen - metabolism Oxidation Oxidation-Reduction Oxidizers Oxidoreductases - genetics Oxidoreductases - metabolism Soil Microbiology Soils |
title | Autotrophic ammonia oxidation by soil thaumarchaea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autotrophic%20ammonia%20oxidation%20by%20soil%20thaumarchaea&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhang,%20Li-Mei&rft.date=2010-10-05&rft.volume=107&rft.issue=40&rft.spage=17240&rft.epage=17245&rft.pages=17240-17245&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1004947107&rft_dat=%3Cjstor_proqu%3E20779947%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=757190297&rft_id=info:pmid/20855593&rft_jstor_id=20779947&rfr_iscdi=true |