Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites
Turning heads on tRNA translocation on the ribosome During translation, transfer RNAs enter the ribosome and then move sequentially through three sites, known as A, P and E, as they transfer their attached amino acids onto the growing peptide chain. How the ribosome facilitates tRNA translocation be...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2010-12, Vol.468 (7324), p.713-716 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 716 |
---|---|
container_issue | 7324 |
container_start_page | 713 |
container_title | Nature (London) |
container_volume | 468 |
creator | Ratje, Andreas H. Loerke, Justus Mikolajka, Aleksandra Brünner, Matthias Hildebrand, Peter W. Starosta, Agata L. Dönhöfer, Alexandra Connell, Sean R. Fucini, Paola Mielke, Thorsten Whitford, Paul C. Onuchic, José N. Yu, Yanan Sanbonmatsu, Karissa Y. Hartmann, Roland K. Penczek, Pawel A. Wilson, Daniel N. Spahn, Christian M. T. |
description | Turning heads on tRNA translocation on the ribosome
During translation, transfer RNAs enter the ribosome and then move sequentially through three sites, known as A, P and E, as they transfer their attached amino acids onto the growing peptide chain. How the ribosome facilitates tRNA translocation between the sites remains largely unknown. Christian Spahn and colleagues have used multiparticle cryoelectron microscopy of a ribosome bound to the translation elongation factor, EF-G, to get information about tRNA movement. They identify two new sub-states and conclude that, following spontaneous inter-subunit ratcheting, translocation is the direct result of head swivelling and unratcheting of the 30S ribosomal subunit.
During translation, tRNAs enter the ribosome and then move sequentially through three sites, known as A, P and E, as they transfer their attached amino acids onto the growing peptide chain. How the ribosome facilitates tRNA translocation between the sites remains largely unknown. Now a study uses multiparticle cryoelectron microscopy of a ribosome bound to the translation elongation factor, EF-G, to get information about tRNA movement. It identifies two new substates and sees that translocation is linked to unratcheting of the 30S ribosomal subunit.
The elongation cycle of protein synthesis involves the delivery of aminoacyl-transfer RNAs to the aminoacyl-tRNA-binding site (A site) of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A site
1
,
2
. The translocation reaction is catalysed by elongation factor G (EF-G) in a GTP-dependent manner
3
. Despite the availability of structures of various EF-G–ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryoelectron microscopy analysis to resolve two previously unseen subpopulations within
Thermus thermophilus
EF-G–ribosome complexes at subnanometre resolution, one of them with a partly translocated tRNA. Comparison of these substates reveals that translocation of tRNA on the 30S subunit parallels the swivelling of the 30S head and is coupled to unratcheting of the 30S body. Because the tRNA maintains contact with the peptidyl-tRNA-binding site (P site) on the 30S head and simultaneously establishes interaction with the exit site (E site) on the 30S platform, a novel intra-subunit ‘pe/E’ hybrid state is formed. This state is stabilized by domain IV of EF- |
doi_str_mv | 10.1038/nature09547 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856765025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A243706971</galeid><sourcerecordid>A243706971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c719t-c9ed3e374ec47405d15c45b360b9a23c0e7d5f4dace4a052ac865af1907cd2663</originalsourceid><addsrcrecordid>eNqF0u9r1DAYB_AiirtNX_lewoaIaGeS5kf78jjUDcaEOfFlSdOnt4w2uSWp8_57M-90O6lIXgTyfPKEJN8se0HwMcFF-d6qOHrAFWfyUTYjTIqciVI-zmYY0zLHZSH2sv0QrjHGnEj2NNujhFDGeDXL1AmoFoVb8x165CyKV4C8aVxwA6BOadObqCIEFL2yoXdaRZNYs0YDpAXkOmRsquVhbEZrIooX53N0tW68SW1N2vkse9KpPsDz7XyQff344XJxkp99_nS6mJ_lWpIq5rqCtoBCMtBMMsxbwjXjTSFwUylaaAyy5R1rlQamMKdKl4KrjlRY6pYKURxkrzd9V97djBBiPZigoe-VBTeGuuRCCo4p_78kvBKMiCrJw7_ktRu9TddISJRUYkITOtqgpeqhNrZz6T30Xct6TlkhsagkSSqfUEuw4FXvLHQmLe_4wwmvV-amfoiOJ1AaLQxGT3Z9s7MhmQg_4lKNIdSnXy527dt_2_nlt8X5pNbeheChq1feDMqva4Lru5zWD3Ka9Mvtw47NAO0f-zuYCbzaAhW06ruUPm3CvStYivKvH3q3cSGV7BL8_Q9NnfsTsc767Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>816827012</pqid></control><display><type>article</type><title>Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Ratje, Andreas H. ; Loerke, Justus ; Mikolajka, Aleksandra ; Brünner, Matthias ; Hildebrand, Peter W. ; Starosta, Agata L. ; Dönhöfer, Alexandra ; Connell, Sean R. ; Fucini, Paola ; Mielke, Thorsten ; Whitford, Paul C. ; Onuchic, José N. ; Yu, Yanan ; Sanbonmatsu, Karissa Y. ; Hartmann, Roland K. ; Penczek, Pawel A. ; Wilson, Daniel N. ; Spahn, Christian M. T.</creator><creatorcontrib>Ratje, Andreas H. ; Loerke, Justus ; Mikolajka, Aleksandra ; Brünner, Matthias ; Hildebrand, Peter W. ; Starosta, Agata L. ; Dönhöfer, Alexandra ; Connell, Sean R. ; Fucini, Paola ; Mielke, Thorsten ; Whitford, Paul C. ; Onuchic, José N. ; Yu, Yanan ; Sanbonmatsu, Karissa Y. ; Hartmann, Roland K. ; Penczek, Pawel A. ; Wilson, Daniel N. ; Spahn, Christian M. T.</creatorcontrib><description>Turning heads on tRNA translocation on the ribosome
During translation, transfer RNAs enter the ribosome and then move sequentially through three sites, known as A, P and E, as they transfer their attached amino acids onto the growing peptide chain. How the ribosome facilitates tRNA translocation between the sites remains largely unknown. Christian Spahn and colleagues have used multiparticle cryoelectron microscopy of a ribosome bound to the translation elongation factor, EF-G, to get information about tRNA movement. They identify two new sub-states and conclude that, following spontaneous inter-subunit ratcheting, translocation is the direct result of head swivelling and unratcheting of the 30S ribosomal subunit.
During translation, tRNAs enter the ribosome and then move sequentially through three sites, known as A, P and E, as they transfer their attached amino acids onto the growing peptide chain. How the ribosome facilitates tRNA translocation between the sites remains largely unknown. Now a study uses multiparticle cryoelectron microscopy of a ribosome bound to the translation elongation factor, EF-G, to get information about tRNA movement. It identifies two new substates and sees that translocation is linked to unratcheting of the 30S ribosomal subunit.
The elongation cycle of protein synthesis involves the delivery of aminoacyl-transfer RNAs to the aminoacyl-tRNA-binding site (A site) of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A site
1
,
2
. The translocation reaction is catalysed by elongation factor G (EF-G) in a GTP-dependent manner
3
. Despite the availability of structures of various EF-G–ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryoelectron microscopy analysis to resolve two previously unseen subpopulations within
Thermus thermophilus
EF-G–ribosome complexes at subnanometre resolution, one of them with a partly translocated tRNA. Comparison of these substates reveals that translocation of tRNA on the 30S subunit parallels the swivelling of the 30S head and is coupled to unratcheting of the 30S body. Because the tRNA maintains contact with the peptidyl-tRNA-binding site (P site) on the 30S head and simultaneously establishes interaction with the exit site (E site) on the 30S platform, a novel intra-subunit ‘pe/E’ hybrid state is formed. This state is stabilized by domain IV of EF-G, which interacts with the swivelled 30S-head conformation. These findings provide direct structural and mechanistic insight into the ‘missing link’ in terms of tRNA intermediates involved in the universally conserved translocation process.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature09547</identifier><identifier>PMID: 21124459</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/337/574/1789 ; 631/337/574/1793 ; 631/45/535/1258/1259 ; 631/57/2272/2273 ; Binding Sites ; Biological and medical sciences ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Fundamental and applied biological sciences. Psychology ; Gram-negative bacteria ; Guanosine Diphosphate - chemistry ; Guanosine Diphosphate - metabolism ; Humanities and Social Sciences ; letter ; Models, Molecular ; Molecular and cellular biology ; Molecular genetics ; Movement ; multidisciplinary ; Peptide Elongation Factor G - chemistry ; Peptide Elongation Factor G - metabolism ; Peptides ; Physiological aspects ; Protein Biosynthesis ; Protein Conformation ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; Protein synthesis ; Proteins ; Ribonucleic acid ; Ribosome Subunits, Small, Bacterial - chemistry ; Ribosome Subunits, Small, Bacterial - metabolism ; Ribosome Subunits, Small, Bacterial - ultrastructure ; Ribosomes ; RNA ; RNA, Transfer - chemistry ; RNA, Transfer - metabolism ; RNA, Transfer - ultrastructure ; Science ; Science (multidisciplinary) ; Structure ; Subpopulations ; Thermus thermophilus ; Thermus thermophilus - chemistry ; Transfer RNA ; Translation. Translation factors. Protein processing ; Translocation</subject><ispartof>Nature (London), 2010-12, Vol.468 (7324), p.713-716</ispartof><rights>Springer Nature Limited 2010</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c719t-c9ed3e374ec47405d15c45b360b9a23c0e7d5f4dace4a052ac865af1907cd2663</citedby><cites>FETCH-LOGICAL-c719t-c9ed3e374ec47405d15c45b360b9a23c0e7d5f4dace4a052ac865af1907cd2663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature09547$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature09547$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23451769$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21124459$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ratje, Andreas H.</creatorcontrib><creatorcontrib>Loerke, Justus</creatorcontrib><creatorcontrib>Mikolajka, Aleksandra</creatorcontrib><creatorcontrib>Brünner, Matthias</creatorcontrib><creatorcontrib>Hildebrand, Peter W.</creatorcontrib><creatorcontrib>Starosta, Agata L.</creatorcontrib><creatorcontrib>Dönhöfer, Alexandra</creatorcontrib><creatorcontrib>Connell, Sean R.</creatorcontrib><creatorcontrib>Fucini, Paola</creatorcontrib><creatorcontrib>Mielke, Thorsten</creatorcontrib><creatorcontrib>Whitford, Paul C.</creatorcontrib><creatorcontrib>Onuchic, José N.</creatorcontrib><creatorcontrib>Yu, Yanan</creatorcontrib><creatorcontrib>Sanbonmatsu, Karissa Y.</creatorcontrib><creatorcontrib>Hartmann, Roland K.</creatorcontrib><creatorcontrib>Penczek, Pawel A.</creatorcontrib><creatorcontrib>Wilson, Daniel N.</creatorcontrib><creatorcontrib>Spahn, Christian M. T.</creatorcontrib><title>Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Turning heads on tRNA translocation on the ribosome
During translation, transfer RNAs enter the ribosome and then move sequentially through three sites, known as A, P and E, as they transfer their attached amino acids onto the growing peptide chain. How the ribosome facilitates tRNA translocation between the sites remains largely unknown. Christian Spahn and colleagues have used multiparticle cryoelectron microscopy of a ribosome bound to the translation elongation factor, EF-G, to get information about tRNA movement. They identify two new sub-states and conclude that, following spontaneous inter-subunit ratcheting, translocation is the direct result of head swivelling and unratcheting of the 30S ribosomal subunit.
During translation, tRNAs enter the ribosome and then move sequentially through three sites, known as A, P and E, as they transfer their attached amino acids onto the growing peptide chain. How the ribosome facilitates tRNA translocation between the sites remains largely unknown. Now a study uses multiparticle cryoelectron microscopy of a ribosome bound to the translation elongation factor, EF-G, to get information about tRNA movement. It identifies two new substates and sees that translocation is linked to unratcheting of the 30S ribosomal subunit.
The elongation cycle of protein synthesis involves the delivery of aminoacyl-transfer RNAs to the aminoacyl-tRNA-binding site (A site) of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A site
1
,
2
. The translocation reaction is catalysed by elongation factor G (EF-G) in a GTP-dependent manner
3
. Despite the availability of structures of various EF-G–ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryoelectron microscopy analysis to resolve two previously unseen subpopulations within
Thermus thermophilus
EF-G–ribosome complexes at subnanometre resolution, one of them with a partly translocated tRNA. Comparison of these substates reveals that translocation of tRNA on the 30S subunit parallels the swivelling of the 30S head and is coupled to unratcheting of the 30S body. Because the tRNA maintains contact with the peptidyl-tRNA-binding site (P site) on the 30S head and simultaneously establishes interaction with the exit site (E site) on the 30S platform, a novel intra-subunit ‘pe/E’ hybrid state is formed. This state is stabilized by domain IV of EF-G, which interacts with the swivelled 30S-head conformation. These findings provide direct structural and mechanistic insight into the ‘missing link’ in terms of tRNA intermediates involved in the universally conserved translocation process.</description><subject>631/337/574/1789</subject><subject>631/337/574/1793</subject><subject>631/45/535/1258/1259</subject><subject>631/57/2272/2273</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gram-negative bacteria</subject><subject>Guanosine Diphosphate - chemistry</subject><subject>Guanosine Diphosphate - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Models, Molecular</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Movement</subject><subject>multidisciplinary</subject><subject>Peptide Elongation Factor G - chemistry</subject><subject>Peptide Elongation Factor G - metabolism</subject><subject>Peptides</subject><subject>Physiological aspects</subject><subject>Protein Biosynthesis</subject><subject>Protein Conformation</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>Ribosome Subunits, Small, Bacterial - chemistry</subject><subject>Ribosome Subunits, Small, Bacterial - metabolism</subject><subject>Ribosome Subunits, Small, Bacterial - ultrastructure</subject><subject>Ribosomes</subject><subject>RNA</subject><subject>RNA, Transfer - chemistry</subject><subject>RNA, Transfer - metabolism</subject><subject>RNA, Transfer - ultrastructure</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Structure</subject><subject>Subpopulations</subject><subject>Thermus thermophilus</subject><subject>Thermus thermophilus - chemistry</subject><subject>Transfer RNA</subject><subject>Translation. Translation factors. Protein processing</subject><subject>Translocation</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0u9r1DAYB_AiirtNX_lewoaIaGeS5kf78jjUDcaEOfFlSdOnt4w2uSWp8_57M-90O6lIXgTyfPKEJN8se0HwMcFF-d6qOHrAFWfyUTYjTIqciVI-zmYY0zLHZSH2sv0QrjHGnEj2NNujhFDGeDXL1AmoFoVb8x165CyKV4C8aVxwA6BOadObqCIEFL2yoXdaRZNYs0YDpAXkOmRsquVhbEZrIooX53N0tW68SW1N2vkse9KpPsDz7XyQff344XJxkp99_nS6mJ_lWpIq5rqCtoBCMtBMMsxbwjXjTSFwUylaaAyy5R1rlQamMKdKl4KrjlRY6pYKURxkrzd9V97djBBiPZigoe-VBTeGuuRCCo4p_78kvBKMiCrJw7_ktRu9TddISJRUYkITOtqgpeqhNrZz6T30Xct6TlkhsagkSSqfUEuw4FXvLHQmLe_4wwmvV-amfoiOJ1AaLQxGT3Z9s7MhmQg_4lKNIdSnXy527dt_2_nlt8X5pNbeheChq1feDMqva4Lru5zWD3Ka9Mvtw47NAO0f-zuYCbzaAhW06ruUPm3CvStYivKvH3q3cSGV7BL8_Q9NnfsTsc767Q</recordid><startdate>20101202</startdate><enddate>20101202</enddate><creator>Ratje, Andreas H.</creator><creator>Loerke, Justus</creator><creator>Mikolajka, Aleksandra</creator><creator>Brünner, Matthias</creator><creator>Hildebrand, Peter W.</creator><creator>Starosta, Agata L.</creator><creator>Dönhöfer, Alexandra</creator><creator>Connell, Sean R.</creator><creator>Fucini, Paola</creator><creator>Mielke, Thorsten</creator><creator>Whitford, Paul C.</creator><creator>Onuchic, José N.</creator><creator>Yu, Yanan</creator><creator>Sanbonmatsu, Karissa Y.</creator><creator>Hartmann, Roland K.</creator><creator>Penczek, Pawel A.</creator><creator>Wilson, Daniel N.</creator><creator>Spahn, Christian M. T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20101202</creationdate><title>Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites</title><author>Ratje, Andreas H. ; Loerke, Justus ; Mikolajka, Aleksandra ; Brünner, Matthias ; Hildebrand, Peter W. ; Starosta, Agata L. ; Dönhöfer, Alexandra ; Connell, Sean R. ; Fucini, Paola ; Mielke, Thorsten ; Whitford, Paul C. ; Onuchic, José N. ; Yu, Yanan ; Sanbonmatsu, Karissa Y. ; Hartmann, Roland K. ; Penczek, Pawel A. ; Wilson, Daniel N. ; Spahn, Christian M. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c719t-c9ed3e374ec47405d15c45b360b9a23c0e7d5f4dace4a052ac865af1907cd2663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>631/337/574/1789</topic><topic>631/337/574/1793</topic><topic>631/45/535/1258/1259</topic><topic>631/57/2272/2273</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gram-negative bacteria</topic><topic>Guanosine Diphosphate - chemistry</topic><topic>Guanosine Diphosphate - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Models, Molecular</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Movement</topic><topic>multidisciplinary</topic><topic>Peptide Elongation Factor G - chemistry</topic><topic>Peptide Elongation Factor G - metabolism</topic><topic>Peptides</topic><topic>Physiological aspects</topic><topic>Protein Biosynthesis</topic><topic>Protein Conformation</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>Ribosome Subunits, Small, Bacterial - chemistry</topic><topic>Ribosome Subunits, Small, Bacterial - metabolism</topic><topic>Ribosome Subunits, Small, Bacterial - ultrastructure</topic><topic>Ribosomes</topic><topic>RNA</topic><topic>RNA, Transfer - chemistry</topic><topic>RNA, Transfer - metabolism</topic><topic>RNA, Transfer - ultrastructure</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Structure</topic><topic>Subpopulations</topic><topic>Thermus thermophilus</topic><topic>Thermus thermophilus - chemistry</topic><topic>Transfer RNA</topic><topic>Translation. Translation factors. Protein processing</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratje, Andreas H.</creatorcontrib><creatorcontrib>Loerke, Justus</creatorcontrib><creatorcontrib>Mikolajka, Aleksandra</creatorcontrib><creatorcontrib>Brünner, Matthias</creatorcontrib><creatorcontrib>Hildebrand, Peter W.</creatorcontrib><creatorcontrib>Starosta, Agata L.</creatorcontrib><creatorcontrib>Dönhöfer, Alexandra</creatorcontrib><creatorcontrib>Connell, Sean R.</creatorcontrib><creatorcontrib>Fucini, Paola</creatorcontrib><creatorcontrib>Mielke, Thorsten</creatorcontrib><creatorcontrib>Whitford, Paul C.</creatorcontrib><creatorcontrib>Onuchic, José N.</creatorcontrib><creatorcontrib>Yu, Yanan</creatorcontrib><creatorcontrib>Sanbonmatsu, Karissa Y.</creatorcontrib><creatorcontrib>Hartmann, Roland K.</creatorcontrib><creatorcontrib>Penczek, Pawel A.</creatorcontrib><creatorcontrib>Wilson, Daniel N.</creatorcontrib><creatorcontrib>Spahn, Christian M. T.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratje, Andreas H.</au><au>Loerke, Justus</au><au>Mikolajka, Aleksandra</au><au>Brünner, Matthias</au><au>Hildebrand, Peter W.</au><au>Starosta, Agata L.</au><au>Dönhöfer, Alexandra</au><au>Connell, Sean R.</au><au>Fucini, Paola</au><au>Mielke, Thorsten</au><au>Whitford, Paul C.</au><au>Onuchic, José N.</au><au>Yu, Yanan</au><au>Sanbonmatsu, Karissa Y.</au><au>Hartmann, Roland K.</au><au>Penczek, Pawel A.</au><au>Wilson, Daniel N.</au><au>Spahn, Christian M. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2010-12-02</date><risdate>2010</risdate><volume>468</volume><issue>7324</issue><spage>713</spage><epage>716</epage><pages>713-716</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Turning heads on tRNA translocation on the ribosome
During translation, transfer RNAs enter the ribosome and then move sequentially through three sites, known as A, P and E, as they transfer their attached amino acids onto the growing peptide chain. How the ribosome facilitates tRNA translocation between the sites remains largely unknown. Christian Spahn and colleagues have used multiparticle cryoelectron microscopy of a ribosome bound to the translation elongation factor, EF-G, to get information about tRNA movement. They identify two new sub-states and conclude that, following spontaneous inter-subunit ratcheting, translocation is the direct result of head swivelling and unratcheting of the 30S ribosomal subunit.
During translation, tRNAs enter the ribosome and then move sequentially through three sites, known as A, P and E, as they transfer their attached amino acids onto the growing peptide chain. How the ribosome facilitates tRNA translocation between the sites remains largely unknown. Now a study uses multiparticle cryoelectron microscopy of a ribosome bound to the translation elongation factor, EF-G, to get information about tRNA movement. It identifies two new substates and sees that translocation is linked to unratcheting of the 30S ribosomal subunit.
The elongation cycle of protein synthesis involves the delivery of aminoacyl-transfer RNAs to the aminoacyl-tRNA-binding site (A site) of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A site
1
,
2
. The translocation reaction is catalysed by elongation factor G (EF-G) in a GTP-dependent manner
3
. Despite the availability of structures of various EF-G–ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryoelectron microscopy analysis to resolve two previously unseen subpopulations within
Thermus thermophilus
EF-G–ribosome complexes at subnanometre resolution, one of them with a partly translocated tRNA. Comparison of these substates reveals that translocation of tRNA on the 30S subunit parallels the swivelling of the 30S head and is coupled to unratcheting of the 30S body. Because the tRNA maintains contact with the peptidyl-tRNA-binding site (P site) on the 30S head and simultaneously establishes interaction with the exit site (E site) on the 30S platform, a novel intra-subunit ‘pe/E’ hybrid state is formed. This state is stabilized by domain IV of EF-G, which interacts with the swivelled 30S-head conformation. These findings provide direct structural and mechanistic insight into the ‘missing link’ in terms of tRNA intermediates involved in the universally conserved translocation process.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21124459</pmid><doi>10.1038/nature09547</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2010-12, Vol.468 (7324), p.713-716 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_856765025 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 631/337/574/1789 631/337/574/1793 631/45/535/1258/1259 631/57/2272/2273 Binding Sites Biological and medical sciences Cryoelectron Microscopy Crystallography, X-Ray Fundamental and applied biological sciences. Psychology Gram-negative bacteria Guanosine Diphosphate - chemistry Guanosine Diphosphate - metabolism Humanities and Social Sciences letter Models, Molecular Molecular and cellular biology Molecular genetics Movement multidisciplinary Peptide Elongation Factor G - chemistry Peptide Elongation Factor G - metabolism Peptides Physiological aspects Protein Biosynthesis Protein Conformation Protein Subunits - chemistry Protein Subunits - metabolism Protein synthesis Proteins Ribonucleic acid Ribosome Subunits, Small, Bacterial - chemistry Ribosome Subunits, Small, Bacterial - metabolism Ribosome Subunits, Small, Bacterial - ultrastructure Ribosomes RNA RNA, Transfer - chemistry RNA, Transfer - metabolism RNA, Transfer - ultrastructure Science Science (multidisciplinary) Structure Subpopulations Thermus thermophilus Thermus thermophilus - chemistry Transfer RNA Translation. Translation factors. Protein processing Translocation |
title | Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Head%20swivel%20on%20the%20ribosome%20facilitates%20translocation%20by%20means%20of%20intra-subunit%20tRNA%20hybrid%20sites&rft.jtitle=Nature%20(London)&rft.au=Ratje,%20Andreas%20H.&rft.date=2010-12-02&rft.volume=468&rft.issue=7324&rft.spage=713&rft.epage=716&rft.pages=713-716&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature09547&rft_dat=%3Cgale_proqu%3EA243706971%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=816827012&rft_id=info:pmid/21124459&rft_galeid=A243706971&rfr_iscdi=true |