Hydration-controlled bacterial motility and dispersal on surfaces

Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably hydrated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2010-08, Vol.107 (32), p.14369-14372
Hauptverfasser: Dechesne, Arnaud, Wang, Gang, Gülez, Gamze, Or, Dani, Smets, Barth F., Tiedje, James M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14372
container_issue 32
container_start_page 14369
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Dechesne, Arnaud
Wang, Gang
Gülez, Gamze
Or, Dani
Smets, Barth F.
Tiedje, James M.
description Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably hydrated habitats, where water dynamics result in fragmentedaquatic habitats connected bymicrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharplywithin asmall rangeof water potential (0 to -2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 μm. However, bacteria could rapidly resume motility in response to periodic increases in hydration. We propose a biophysical model that captures key effects of hydration and liquid-film thickness on individual cell velocity and use a simple roughness network model to simulate colony expansion. Model predictions match experimental results reasonably well, highlighting the role of viscous and capillary pinning forces in hindering flagellar motility. Although flagellar motility seems to be restricted to a narrow range of very wet conditions, fitness gains conferred by fast surface colonization during transient favorable periods might offset the costs associated with flagella synthesis and explain the sustained presence of flagellated prokaryotes in partially saturated habitats such as soil surfaces.
doi_str_mv 10.1073/pnas.1008392107
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856764658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25708908</jstor_id><sourcerecordid>25708908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-8c6691959cdde248e6846f26046bcb31e571ff7351d5925f7c3596d08bb1fdc73</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS0EomngzAm04tLT0vG3fUGqKtoiVeJCz5bX9raONutg7yLlv8dR0qblUl9sjX_vjT0PoU8YvmGQ9Hwz2lJPoKgmtfAGLTBo3Aqm4S1aABDZKkbYCTotZQUAmit4j04ICAEUkwW6uNn6bKeYxtalccppGIJvOuumkKMdmnWa4hCnbWNH3_hYNiGXWk5jU-bcWxfKB_Sut0MJHw_7Et1d_fh9edPe_rr-eXlx2zquxdQqJ4TGmmvnfSBMBaGY6IkAJjrXURy4xH0vKceea8J76WjVeVBdh3vvJF2i73vfzdytg3ehvtYOZpPj2uatSTaalzdjfDD36a8hmhDOcDU4Oxjk9GcOZTLrWFwYBjuGNBejuJCCCa5eJSXnmGohxOskU5oq4KySX_8jV2nOY51YhRgQTOtaovM95HIqJYf-6XsYzC5wswvcHAOvii_Pp_LEPyZcgeYA7JRHO2koMZhRoSvyeY-sypTy0YJLULp2-gfEwbqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744021333</pqid></control><display><type>article</type><title>Hydration-controlled bacterial motility and dispersal on surfaces</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dechesne, Arnaud ; Wang, Gang ; Gülez, Gamze ; Or, Dani ; Smets, Barth F. ; Tiedje, James M.</creator><creatorcontrib>Dechesne, Arnaud ; Wang, Gang ; Gülez, Gamze ; Or, Dani ; Smets, Barth F. ; Tiedje, James M.</creatorcontrib><description>Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably hydrated habitats, where water dynamics result in fragmentedaquatic habitats connected bymicrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharplywithin asmall rangeof water potential (0 to -2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 μm. However, bacteria could rapidly resume motility in response to periodic increases in hydration. We propose a biophysical model that captures key effects of hydration and liquid-film thickness on individual cell velocity and use a simple roughness network model to simulate colony expansion. Model predictions match experimental results reasonably well, highlighting the role of viscous and capillary pinning forces in hindering flagellar motility. Although flagellar motility seems to be restricted to a narrow range of very wet conditions, fitness gains conferred by fast surface colonization during transient favorable periods might offset the costs associated with flagella synthesis and explain the sustained presence of flagellated prokaryotes in partially saturated habitats such as soil surfaces.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1008392107</identifier><identifier>PMID: 20660312</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aquatic habitats ; Bacteria ; Bacterial motility ; Bacterial Physiological Phenomena - drug effects ; Biological Sciences ; Biophysics ; Ecosystem ; Experiments ; Flagella ; Flagella - physiology ; Gram-negative bacteria ; Kinetics ; Liquids ; Microbiology ; Modeling ; Movement - drug effects ; Porosity ; Prokaryotes ; Pseudomonas putida ; Pseudomonas putida - physiology ; Soil ; Soil bacteria ; Surface Properties ; Swimming ; Trajectories ; Water - pharmacology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (32), p.14369-14372</ispartof><rights>Copyright National Academy of Sciences Aug 10, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-8c6691959cdde248e6846f26046bcb31e571ff7351d5925f7c3596d08bb1fdc73</citedby><cites>FETCH-LOGICAL-c596t-8c6691959cdde248e6846f26046bcb31e571ff7351d5925f7c3596d08bb1fdc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/32.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25708908$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25708908$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20660312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dechesne, Arnaud</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Gülez, Gamze</creatorcontrib><creatorcontrib>Or, Dani</creatorcontrib><creatorcontrib>Smets, Barth F.</creatorcontrib><creatorcontrib>Tiedje, James M.</creatorcontrib><title>Hydration-controlled bacterial motility and dispersal on surfaces</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably hydrated habitats, where water dynamics result in fragmentedaquatic habitats connected bymicrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharplywithin asmall rangeof water potential (0 to -2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 μm. However, bacteria could rapidly resume motility in response to periodic increases in hydration. We propose a biophysical model that captures key effects of hydration and liquid-film thickness on individual cell velocity and use a simple roughness network model to simulate colony expansion. Model predictions match experimental results reasonably well, highlighting the role of viscous and capillary pinning forces in hindering flagellar motility. Although flagellar motility seems to be restricted to a narrow range of very wet conditions, fitness gains conferred by fast surface colonization during transient favorable periods might offset the costs associated with flagella synthesis and explain the sustained presence of flagellated prokaryotes in partially saturated habitats such as soil surfaces.</description><subject>Aquatic habitats</subject><subject>Bacteria</subject><subject>Bacterial motility</subject><subject>Bacterial Physiological Phenomena - drug effects</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Ecosystem</subject><subject>Experiments</subject><subject>Flagella</subject><subject>Flagella - physiology</subject><subject>Gram-negative bacteria</subject><subject>Kinetics</subject><subject>Liquids</subject><subject>Microbiology</subject><subject>Modeling</subject><subject>Movement - drug effects</subject><subject>Porosity</subject><subject>Prokaryotes</subject><subject>Pseudomonas putida</subject><subject>Pseudomonas putida - physiology</subject><subject>Soil</subject><subject>Soil bacteria</subject><subject>Surface Properties</subject><subject>Swimming</subject><subject>Trajectories</subject><subject>Water - pharmacology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxS0EomngzAm04tLT0vG3fUGqKtoiVeJCz5bX9raONutg7yLlv8dR0qblUl9sjX_vjT0PoU8YvmGQ9Hwz2lJPoKgmtfAGLTBo3Aqm4S1aABDZKkbYCTotZQUAmit4j04ICAEUkwW6uNn6bKeYxtalccppGIJvOuumkKMdmnWa4hCnbWNH3_hYNiGXWk5jU-bcWxfKB_Sut0MJHw_7Et1d_fh9edPe_rr-eXlx2zquxdQqJ4TGmmvnfSBMBaGY6IkAJjrXURy4xH0vKceea8J76WjVeVBdh3vvJF2i73vfzdytg3ehvtYOZpPj2uatSTaalzdjfDD36a8hmhDOcDU4Oxjk9GcOZTLrWFwYBjuGNBejuJCCCa5eJSXnmGohxOskU5oq4KySX_8jV2nOY51YhRgQTOtaovM95HIqJYf-6XsYzC5wswvcHAOvii_Pp_LEPyZcgeYA7JRHO2koMZhRoSvyeY-sypTy0YJLULp2-gfEwbqg</recordid><startdate>20100810</startdate><enddate>20100810</enddate><creator>Dechesne, Arnaud</creator><creator>Wang, Gang</creator><creator>Gülez, Gamze</creator><creator>Or, Dani</creator><creator>Smets, Barth F.</creator><creator>Tiedje, James M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20100810</creationdate><title>Hydration-controlled bacterial motility and dispersal on surfaces</title><author>Dechesne, Arnaud ; Wang, Gang ; Gülez, Gamze ; Or, Dani ; Smets, Barth F. ; Tiedje, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-8c6691959cdde248e6846f26046bcb31e571ff7351d5925f7c3596d08bb1fdc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aquatic habitats</topic><topic>Bacteria</topic><topic>Bacterial motility</topic><topic>Bacterial Physiological Phenomena - drug effects</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Ecosystem</topic><topic>Experiments</topic><topic>Flagella</topic><topic>Flagella - physiology</topic><topic>Gram-negative bacteria</topic><topic>Kinetics</topic><topic>Liquids</topic><topic>Microbiology</topic><topic>Modeling</topic><topic>Movement - drug effects</topic><topic>Porosity</topic><topic>Prokaryotes</topic><topic>Pseudomonas putida</topic><topic>Pseudomonas putida - physiology</topic><topic>Soil</topic><topic>Soil bacteria</topic><topic>Surface Properties</topic><topic>Swimming</topic><topic>Trajectories</topic><topic>Water - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dechesne, Arnaud</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Gülez, Gamze</creatorcontrib><creatorcontrib>Or, Dani</creatorcontrib><creatorcontrib>Smets, Barth F.</creatorcontrib><creatorcontrib>Tiedje, James M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dechesne, Arnaud</au><au>Wang, Gang</au><au>Gülez, Gamze</au><au>Or, Dani</au><au>Smets, Barth F.</au><au>Tiedje, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydration-controlled bacterial motility and dispersal on surfaces</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-08-10</date><risdate>2010</risdate><volume>107</volume><issue>32</issue><spage>14369</spage><epage>14372</epage><pages>14369-14372</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably hydrated habitats, where water dynamics result in fragmentedaquatic habitats connected bymicrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharplywithin asmall rangeof water potential (0 to -2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 μm. However, bacteria could rapidly resume motility in response to periodic increases in hydration. We propose a biophysical model that captures key effects of hydration and liquid-film thickness on individual cell velocity and use a simple roughness network model to simulate colony expansion. Model predictions match experimental results reasonably well, highlighting the role of viscous and capillary pinning forces in hindering flagellar motility. Although flagellar motility seems to be restricted to a narrow range of very wet conditions, fitness gains conferred by fast surface colonization during transient favorable periods might offset the costs associated with flagella synthesis and explain the sustained presence of flagellated prokaryotes in partially saturated habitats such as soil surfaces.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20660312</pmid><doi>10.1073/pnas.1008392107</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (32), p.14369-14372
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_856764658
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aquatic habitats
Bacteria
Bacterial motility
Bacterial Physiological Phenomena - drug effects
Biological Sciences
Biophysics
Ecosystem
Experiments
Flagella
Flagella - physiology
Gram-negative bacteria
Kinetics
Liquids
Microbiology
Modeling
Movement - drug effects
Porosity
Prokaryotes
Pseudomonas putida
Pseudomonas putida - physiology
Soil
Soil bacteria
Surface Properties
Swimming
Trajectories
Water - pharmacology
title Hydration-controlled bacterial motility and dispersal on surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydration-controlled%20bacterial%20motility%20and%20dispersal%20on%20surfaces&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dechesne,%20Arnaud&rft.date=2010-08-10&rft.volume=107&rft.issue=32&rft.spage=14369&rft.epage=14372&rft.pages=14369-14372&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1008392107&rft_dat=%3Cjstor_proqu%3E25708908%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744021333&rft_id=info:pmid/20660312&rft_jstor_id=25708908&rfr_iscdi=true