Hydration-controlled bacterial motility and dispersal on surfaces
Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably hydrated...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-08, Vol.107 (32), p.14369-14372 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14372 |
---|---|
container_issue | 32 |
container_start_page | 14369 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Dechesne, Arnaud Wang, Gang Gülez, Gamze Or, Dani Smets, Barth F. Tiedje, James M. |
description | Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably hydrated habitats, where water dynamics result in fragmentedaquatic habitats connected bymicrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharplywithin asmall rangeof water potential (0 to -2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 μm. However, bacteria could rapidly resume motility in response to periodic increases in hydration. We propose a biophysical model that captures key effects of hydration and liquid-film thickness on individual cell velocity and use a simple roughness network model to simulate colony expansion. Model predictions match experimental results reasonably well, highlighting the role of viscous and capillary pinning forces in hindering flagellar motility. Although flagellar motility seems to be restricted to a narrow range of very wet conditions, fitness gains conferred by fast surface colonization during transient favorable periods might offset the costs associated with flagella synthesis and explain the sustained presence of flagellated prokaryotes in partially saturated habitats such as soil surfaces. |
doi_str_mv | 10.1073/pnas.1008392107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856764658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25708908</jstor_id><sourcerecordid>25708908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-8c6691959cdde248e6846f26046bcb31e571ff7351d5925f7c3596d08bb1fdc73</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS0EomngzAm04tLT0vG3fUGqKtoiVeJCz5bX9raONutg7yLlv8dR0qblUl9sjX_vjT0PoU8YvmGQ9Hwz2lJPoKgmtfAGLTBo3Aqm4S1aABDZKkbYCTotZQUAmit4j04ICAEUkwW6uNn6bKeYxtalccppGIJvOuumkKMdmnWa4hCnbWNH3_hYNiGXWk5jU-bcWxfKB_Sut0MJHw_7Et1d_fh9edPe_rr-eXlx2zquxdQqJ4TGmmvnfSBMBaGY6IkAJjrXURy4xH0vKceea8J76WjVeVBdh3vvJF2i73vfzdytg3ehvtYOZpPj2uatSTaalzdjfDD36a8hmhDOcDU4Oxjk9GcOZTLrWFwYBjuGNBejuJCCCa5eJSXnmGohxOskU5oq4KySX_8jV2nOY51YhRgQTOtaovM95HIqJYf-6XsYzC5wswvcHAOvii_Pp_LEPyZcgeYA7JRHO2koMZhRoSvyeY-sypTy0YJLULp2-gfEwbqg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744021333</pqid></control><display><type>article</type><title>Hydration-controlled bacterial motility and dispersal on surfaces</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dechesne, Arnaud ; Wang, Gang ; Gülez, Gamze ; Or, Dani ; Smets, Barth F. ; Tiedje, James M.</creator><creatorcontrib>Dechesne, Arnaud ; Wang, Gang ; Gülez, Gamze ; Or, Dani ; Smets, Barth F. ; Tiedje, James M.</creatorcontrib><description>Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably hydrated habitats, where water dynamics result in fragmentedaquatic habitats connected bymicrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharplywithin asmall rangeof water potential (0 to -2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 μm. However, bacteria could rapidly resume motility in response to periodic increases in hydration. We propose a biophysical model that captures key effects of hydration and liquid-film thickness on individual cell velocity and use a simple roughness network model to simulate colony expansion. Model predictions match experimental results reasonably well, highlighting the role of viscous and capillary pinning forces in hindering flagellar motility. Although flagellar motility seems to be restricted to a narrow range of very wet conditions, fitness gains conferred by fast surface colonization during transient favorable periods might offset the costs associated with flagella synthesis and explain the sustained presence of flagellated prokaryotes in partially saturated habitats such as soil surfaces.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1008392107</identifier><identifier>PMID: 20660312</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aquatic habitats ; Bacteria ; Bacterial motility ; Bacterial Physiological Phenomena - drug effects ; Biological Sciences ; Biophysics ; Ecosystem ; Experiments ; Flagella ; Flagella - physiology ; Gram-negative bacteria ; Kinetics ; Liquids ; Microbiology ; Modeling ; Movement - drug effects ; Porosity ; Prokaryotes ; Pseudomonas putida ; Pseudomonas putida - physiology ; Soil ; Soil bacteria ; Surface Properties ; Swimming ; Trajectories ; Water - pharmacology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (32), p.14369-14372</ispartof><rights>Copyright National Academy of Sciences Aug 10, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-8c6691959cdde248e6846f26046bcb31e571ff7351d5925f7c3596d08bb1fdc73</citedby><cites>FETCH-LOGICAL-c596t-8c6691959cdde248e6846f26046bcb31e571ff7351d5925f7c3596d08bb1fdc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/32.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25708908$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25708908$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20660312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dechesne, Arnaud</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Gülez, Gamze</creatorcontrib><creatorcontrib>Or, Dani</creatorcontrib><creatorcontrib>Smets, Barth F.</creatorcontrib><creatorcontrib>Tiedje, James M.</creatorcontrib><title>Hydration-controlled bacterial motility and dispersal on surfaces</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably hydrated habitats, where water dynamics result in fragmentedaquatic habitats connected bymicrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharplywithin asmall rangeof water potential (0 to -2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 μm. However, bacteria could rapidly resume motility in response to periodic increases in hydration. We propose a biophysical model that captures key effects of hydration and liquid-film thickness on individual cell velocity and use a simple roughness network model to simulate colony expansion. Model predictions match experimental results reasonably well, highlighting the role of viscous and capillary pinning forces in hindering flagellar motility. Although flagellar motility seems to be restricted to a narrow range of very wet conditions, fitness gains conferred by fast surface colonization during transient favorable periods might offset the costs associated with flagella synthesis and explain the sustained presence of flagellated prokaryotes in partially saturated habitats such as soil surfaces.</description><subject>Aquatic habitats</subject><subject>Bacteria</subject><subject>Bacterial motility</subject><subject>Bacterial Physiological Phenomena - drug effects</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Ecosystem</subject><subject>Experiments</subject><subject>Flagella</subject><subject>Flagella - physiology</subject><subject>Gram-negative bacteria</subject><subject>Kinetics</subject><subject>Liquids</subject><subject>Microbiology</subject><subject>Modeling</subject><subject>Movement - drug effects</subject><subject>Porosity</subject><subject>Prokaryotes</subject><subject>Pseudomonas putida</subject><subject>Pseudomonas putida - physiology</subject><subject>Soil</subject><subject>Soil bacteria</subject><subject>Surface Properties</subject><subject>Swimming</subject><subject>Trajectories</subject><subject>Water - pharmacology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxS0EomngzAm04tLT0vG3fUGqKtoiVeJCz5bX9raONutg7yLlv8dR0qblUl9sjX_vjT0PoU8YvmGQ9Hwz2lJPoKgmtfAGLTBo3Aqm4S1aABDZKkbYCTotZQUAmit4j04ICAEUkwW6uNn6bKeYxtalccppGIJvOuumkKMdmnWa4hCnbWNH3_hYNiGXWk5jU-bcWxfKB_Sut0MJHw_7Et1d_fh9edPe_rr-eXlx2zquxdQqJ4TGmmvnfSBMBaGY6IkAJjrXURy4xH0vKceea8J76WjVeVBdh3vvJF2i73vfzdytg3ehvtYOZpPj2uatSTaalzdjfDD36a8hmhDOcDU4Oxjk9GcOZTLrWFwYBjuGNBejuJCCCa5eJSXnmGohxOskU5oq4KySX_8jV2nOY51YhRgQTOtaovM95HIqJYf-6XsYzC5wswvcHAOvii_Pp_LEPyZcgeYA7JRHO2koMZhRoSvyeY-sypTy0YJLULp2-gfEwbqg</recordid><startdate>20100810</startdate><enddate>20100810</enddate><creator>Dechesne, Arnaud</creator><creator>Wang, Gang</creator><creator>Gülez, Gamze</creator><creator>Or, Dani</creator><creator>Smets, Barth F.</creator><creator>Tiedje, James M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20100810</creationdate><title>Hydration-controlled bacterial motility and dispersal on surfaces</title><author>Dechesne, Arnaud ; Wang, Gang ; Gülez, Gamze ; Or, Dani ; Smets, Barth F. ; Tiedje, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-8c6691959cdde248e6846f26046bcb31e571ff7351d5925f7c3596d08bb1fdc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aquatic habitats</topic><topic>Bacteria</topic><topic>Bacterial motility</topic><topic>Bacterial Physiological Phenomena - drug effects</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Ecosystem</topic><topic>Experiments</topic><topic>Flagella</topic><topic>Flagella - physiology</topic><topic>Gram-negative bacteria</topic><topic>Kinetics</topic><topic>Liquids</topic><topic>Microbiology</topic><topic>Modeling</topic><topic>Movement - drug effects</topic><topic>Porosity</topic><topic>Prokaryotes</topic><topic>Pseudomonas putida</topic><topic>Pseudomonas putida - physiology</topic><topic>Soil</topic><topic>Soil bacteria</topic><topic>Surface Properties</topic><topic>Swimming</topic><topic>Trajectories</topic><topic>Water - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dechesne, Arnaud</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Gülez, Gamze</creatorcontrib><creatorcontrib>Or, Dani</creatorcontrib><creatorcontrib>Smets, Barth F.</creatorcontrib><creatorcontrib>Tiedje, James M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dechesne, Arnaud</au><au>Wang, Gang</au><au>Gülez, Gamze</au><au>Or, Dani</au><au>Smets, Barth F.</au><au>Tiedje, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydration-controlled bacterial motility and dispersal on surfaces</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-08-10</date><risdate>2010</risdate><volume>107</volume><issue>32</issue><spage>14369</spage><epage>14372</epage><pages>14369-14372</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably hydrated habitats, where water dynamics result in fragmentedaquatic habitats connected bymicrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharplywithin asmall rangeof water potential (0 to -2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 μm. However, bacteria could rapidly resume motility in response to periodic increases in hydration. We propose a biophysical model that captures key effects of hydration and liquid-film thickness on individual cell velocity and use a simple roughness network model to simulate colony expansion. Model predictions match experimental results reasonably well, highlighting the role of viscous and capillary pinning forces in hindering flagellar motility. Although flagellar motility seems to be restricted to a narrow range of very wet conditions, fitness gains conferred by fast surface colonization during transient favorable periods might offset the costs associated with flagella synthesis and explain the sustained presence of flagellated prokaryotes in partially saturated habitats such as soil surfaces.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20660312</pmid><doi>10.1073/pnas.1008392107</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-08, Vol.107 (32), p.14369-14372 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_856764658 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Aquatic habitats Bacteria Bacterial motility Bacterial Physiological Phenomena - drug effects Biological Sciences Biophysics Ecosystem Experiments Flagella Flagella - physiology Gram-negative bacteria Kinetics Liquids Microbiology Modeling Movement - drug effects Porosity Prokaryotes Pseudomonas putida Pseudomonas putida - physiology Soil Soil bacteria Surface Properties Swimming Trajectories Water - pharmacology |
title | Hydration-controlled bacterial motility and dispersal on surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydration-controlled%20bacterial%20motility%20and%20dispersal%20on%20surfaces&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dechesne,%20Arnaud&rft.date=2010-08-10&rft.volume=107&rft.issue=32&rft.spage=14369&rft.epage=14372&rft.pages=14369-14372&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1008392107&rft_dat=%3Cjstor_proqu%3E25708908%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744021333&rft_id=info:pmid/20660312&rft_jstor_id=25708908&rfr_iscdi=true |