Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites
The dendrites of pyramidal neurons have markedly different electrical properties from those of the soma, owing to the non-uniform distribution of voltage-gated ion channels in dendrites. It is thus possible that drugs acting on ion channels might preferentially alter dendritic, but not somatic, exci...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2002-08, Vol.5 (8), p.767-774 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 774 |
---|---|
container_issue | 8 |
container_start_page | 767 |
container_title | Nature neuroscience |
container_volume | 5 |
creator | Johnston, Daniel Poolos, Nicholas P Migliore, Michele |
description | The dendrites of pyramidal neurons have markedly different electrical properties from those of the soma, owing to the non-uniform distribution of voltage-gated ion channels in dendrites. It is thus possible that drugs acting on ion channels might preferentially alter dendritic, but not somatic, excitability. Using dendritic and somatic whole-cell and cell-attached recordings in rat hippocampal slices, we found that the anticonvulsant lamotrigine selectively reduced action potential firing from dendritic depolarization, while minimally affecting firing at the soma. This regional and input-specific effect resulted from an increase in the hyperpolarization-activated cation current (
I
h
), a voltage-gated current present predominantly in dendrites. These results demonstrate that neuronal excitability can be altered by drugs acting selectively on dendrites, and suggest an important role for
I
h
in controlling dendritic excitability and epileptogenesis. |
doi_str_mv | 10.1038/nn891 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856762445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185561897</galeid><sourcerecordid>A185561897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-d000e1c358639dc141952131d189b954fb5e4c67143bb8bdf770d2ee5816a94f3</originalsourceid><addsrcrecordid>eNqFkltrFTEUhQdRbK39BYIMgooPU5OZXB9L8VIoKF6eh0yyZ07KTHLMBXr-vTnOwUP7oOQhIftbi71gVdU5RhcYdeK9c0LiR9UppoQ1mLfscXkjyRvWUnZSPYvxFiHEqZBPqxPcYixaKk8r9XWjwqK0n_1ktZrrvA0w5Vkl613tx3rT6I1yDuZYBzBZQ6zTBmq40zapwc427fbYdhfUYk0xcJBDkRpwJtgE8Xn1ZFRzhPPDfVb9_Pjhx9Xn5ubLp-ury5tGU9qlxpTtAOuOCtZJozHBkra4wwYLOUhKxoEC0Yxj0g2DGMzIOTItABWYKUnG7qx6u_pug_-VIaZ-sVHDPCsHPsdeUMZZSwgt5Jt_khxLiSSR_wWxIIxR2RXw1QPw1ufgSty-5YSTlqO928UKTWqG3rrRp6B0OQYWq72D0Zb_SywoZSU0L4J39wSFSXCXJpVj7K-_f7vPvl5ZHXyMAcZ-G-yiwq7HqN8XpP9TkMK9PGyahwXMkTo04pg5lpGbIByjPHR6sYJOpRzgr9M6_Q3ricqV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274742709</pqid></control><display><type>article</type><title>Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Johnston, Daniel ; Poolos, Nicholas P ; Migliore, Michele</creator><creatorcontrib>Johnston, Daniel ; Poolos, Nicholas P ; Migliore, Michele</creatorcontrib><description>The dendrites of pyramidal neurons have markedly different electrical properties from those of the soma, owing to the non-uniform distribution of voltage-gated ion channels in dendrites. It is thus possible that drugs acting on ion channels might preferentially alter dendritic, but not somatic, excitability. Using dendritic and somatic whole-cell and cell-attached recordings in rat hippocampal slices, we found that the anticonvulsant lamotrigine selectively reduced action potential firing from dendritic depolarization, while minimally affecting firing at the soma. This regional and input-specific effect resulted from an increase in the hyperpolarization-activated cation current (
I
h
), a voltage-gated current present predominantly in dendrites. These results demonstrate that neuronal excitability can be altered by drugs acting selectively on dendrites, and suggest an important role for
I
h
in controlling dendritic excitability and epileptogenesis.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn891</identifier><identifier>PMID: 12118259</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Calcium Channel Blockers - pharmacology ; Cyclic Nucleotide-Gated Cation Channels ; Dendrites ; Dendrites - drug effects ; Dendrites - physiology ; Electric Stimulation ; Excitatory Amino Acid Antagonists - pharmacology ; Excitatory Postsynaptic Potentials - physiology ; Hippocampus - cytology ; Hippocampus - drug effects ; Hippocampus - metabolism ; Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels ; In Vitro Techniques ; Ion channels ; Ion Channels - drug effects ; Ion Channels - metabolism ; Male ; Models, Neurological ; Neurobiology ; Neurosciences ; Patch-Clamp Techniques ; Physiological aspects ; Potassium Channels ; Pyramidal Cells - cytology ; Pyramidal Cells - drug effects ; Pyramidal Cells - metabolism ; Rats ; Rats, Sprague-Dawley ; Triazines - pharmacology ; Up-Regulation - drug effects ; Up-Regulation - physiology</subject><ispartof>Nature neuroscience, 2002-08, Vol.5 (8), p.767-774</ispartof><rights>Springer Nature America, Inc. 2002</rights><rights>COPYRIGHT 2002 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-d000e1c358639dc141952131d189b954fb5e4c67143bb8bdf770d2ee5816a94f3</citedby><cites>FETCH-LOGICAL-c553t-d000e1c358639dc141952131d189b954fb5e4c67143bb8bdf770d2ee5816a94f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12118259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnston, Daniel</creatorcontrib><creatorcontrib>Poolos, Nicholas P</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><title>Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>The dendrites of pyramidal neurons have markedly different electrical properties from those of the soma, owing to the non-uniform distribution of voltage-gated ion channels in dendrites. It is thus possible that drugs acting on ion channels might preferentially alter dendritic, but not somatic, excitability. Using dendritic and somatic whole-cell and cell-attached recordings in rat hippocampal slices, we found that the anticonvulsant lamotrigine selectively reduced action potential firing from dendritic depolarization, while minimally affecting firing at the soma. This regional and input-specific effect resulted from an increase in the hyperpolarization-activated cation current (
I
h
), a voltage-gated current present predominantly in dendrites. These results demonstrate that neuronal excitability can be altered by drugs acting selectively on dendrites, and suggest an important role for
I
h
in controlling dendritic excitability and epileptogenesis.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcium Channel Blockers - pharmacology</subject><subject>Cyclic Nucleotide-Gated Cation Channels</subject><subject>Dendrites</subject><subject>Dendrites - drug effects</subject><subject>Dendrites - physiology</subject><subject>Electric Stimulation</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - drug effects</subject><subject>Hippocampus - metabolism</subject><subject>Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels</subject><subject>In Vitro Techniques</subject><subject>Ion channels</subject><subject>Ion Channels - drug effects</subject><subject>Ion Channels - metabolism</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Patch-Clamp Techniques</subject><subject>Physiological aspects</subject><subject>Potassium Channels</subject><subject>Pyramidal Cells - cytology</subject><subject>Pyramidal Cells - drug effects</subject><subject>Pyramidal Cells - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Triazines - pharmacology</subject><subject>Up-Regulation - drug effects</subject><subject>Up-Regulation - physiology</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkltrFTEUhQdRbK39BYIMgooPU5OZXB9L8VIoKF6eh0yyZ07KTHLMBXr-vTnOwUP7oOQhIftbi71gVdU5RhcYdeK9c0LiR9UppoQ1mLfscXkjyRvWUnZSPYvxFiHEqZBPqxPcYixaKk8r9XWjwqK0n_1ktZrrvA0w5Vkl613tx3rT6I1yDuZYBzBZQ6zTBmq40zapwc427fbYdhfUYk0xcJBDkRpwJtgE8Xn1ZFRzhPPDfVb9_Pjhx9Xn5ubLp-ury5tGU9qlxpTtAOuOCtZJozHBkra4wwYLOUhKxoEC0Yxj0g2DGMzIOTItABWYKUnG7qx6u_pug_-VIaZ-sVHDPCsHPsdeUMZZSwgt5Jt_khxLiSSR_wWxIIxR2RXw1QPw1ufgSty-5YSTlqO928UKTWqG3rrRp6B0OQYWq72D0Zb_SywoZSU0L4J39wSFSXCXJpVj7K-_f7vPvl5ZHXyMAcZ-G-yiwq7HqN8XpP9TkMK9PGyahwXMkTo04pg5lpGbIByjPHR6sYJOpRzgr9M6_Q3ricqV</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Johnston, Daniel</creator><creator>Poolos, Nicholas P</creator><creator>Migliore, Michele</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20020801</creationdate><title>Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites</title><author>Johnston, Daniel ; Poolos, Nicholas P ; Migliore, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-d000e1c358639dc141952131d189b954fb5e4c67143bb8bdf770d2ee5816a94f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcium Channel Blockers - pharmacology</topic><topic>Cyclic Nucleotide-Gated Cation Channels</topic><topic>Dendrites</topic><topic>Dendrites - drug effects</topic><topic>Dendrites - physiology</topic><topic>Electric Stimulation</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - drug effects</topic><topic>Hippocampus - metabolism</topic><topic>Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels</topic><topic>In Vitro Techniques</topic><topic>Ion channels</topic><topic>Ion Channels - drug effects</topic><topic>Ion Channels - metabolism</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Patch-Clamp Techniques</topic><topic>Physiological aspects</topic><topic>Potassium Channels</topic><topic>Pyramidal Cells - cytology</topic><topic>Pyramidal Cells - drug effects</topic><topic>Pyramidal Cells - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Triazines - pharmacology</topic><topic>Up-Regulation - drug effects</topic><topic>Up-Regulation - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnston, Daniel</creatorcontrib><creatorcontrib>Poolos, Nicholas P</creatorcontrib><creatorcontrib>Migliore, Michele</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnston, Daniel</au><au>Poolos, Nicholas P</au><au>Migliore, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2002-08-01</date><risdate>2002</risdate><volume>5</volume><issue>8</issue><spage>767</spage><epage>774</epage><pages>767-774</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>The dendrites of pyramidal neurons have markedly different electrical properties from those of the soma, owing to the non-uniform distribution of voltage-gated ion channels in dendrites. It is thus possible that drugs acting on ion channels might preferentially alter dendritic, but not somatic, excitability. Using dendritic and somatic whole-cell and cell-attached recordings in rat hippocampal slices, we found that the anticonvulsant lamotrigine selectively reduced action potential firing from dendritic depolarization, while minimally affecting firing at the soma. This regional and input-specific effect resulted from an increase in the hyperpolarization-activated cation current (
I
h
), a voltage-gated current present predominantly in dendrites. These results demonstrate that neuronal excitability can be altered by drugs acting selectively on dendrites, and suggest an important role for
I
h
in controlling dendritic excitability and epileptogenesis.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>12118259</pmid><doi>10.1038/nn891</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2002-08, Vol.5 (8), p.767-774 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_proquest_miscellaneous_856762445 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | Action Potentials - drug effects Action Potentials - physiology Animal Genetics and Genomics Animals Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Calcium Channel Blockers - pharmacology Cyclic Nucleotide-Gated Cation Channels Dendrites Dendrites - drug effects Dendrites - physiology Electric Stimulation Excitatory Amino Acid Antagonists - pharmacology Excitatory Postsynaptic Potentials - physiology Hippocampus - cytology Hippocampus - drug effects Hippocampus - metabolism Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels In Vitro Techniques Ion channels Ion Channels - drug effects Ion Channels - metabolism Male Models, Neurological Neurobiology Neurosciences Patch-Clamp Techniques Physiological aspects Potassium Channels Pyramidal Cells - cytology Pyramidal Cells - drug effects Pyramidal Cells - metabolism Rats Rats, Sprague-Dawley Triazines - pharmacology Up-Regulation - drug effects Up-Regulation - physiology |
title | Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pharmacological%20upregulation%20of%20h-channels%20reduces%20the%20excitability%20of%20pyramidal%20neuron%20dendrites&rft.jtitle=Nature%20neuroscience&rft.au=Johnston,%20Daniel&rft.date=2002-08-01&rft.volume=5&rft.issue=8&rft.spage=767&rft.epage=774&rft.pages=767-774&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn891&rft_dat=%3Cgale_proqu%3EA185561897%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274742709&rft_id=info:pmid/12118259&rft_galeid=A185561897&rfr_iscdi=true |