Expression of UDP-glucose dehydrogenase reduces cell-wall polysaccharide concentration and increases xylose content in alfalfa stems
The primary cell-wall matrix of most higher plants is composed of large amounts of uronic acids, primarily D-galacturonic acid residues in the backbone of pectic polysaccharides. Uridine diphosphate (UDP)-glucose dehydrogenase is a key enzyme in the biosynthesis of uronic acids. We produced transgen...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2004, Vol.113-116 (1-3), p.1167-1182 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1182 |
---|---|
container_issue | 1-3 |
container_start_page | 1167 |
container_title | Applied biochemistry and biotechnology |
container_volume | 113-116 |
creator | Samac, Deborah A Litterer, Lynn Temple, Glena Jung, Hans-Joachim G Somers, David A |
description | The primary cell-wall matrix of most higher plants is composed of large amounts of uronic acids, primarily D-galacturonic acid residues in the backbone of pectic polysaccharides. Uridine diphosphate (UDP)-glucose dehydrogenase is a key enzyme in the biosynthesis of uronic acids. We produced transgenic alfalfa (Medicago sativa) plants expressing a soybean UDP-glucose dehydrogenase cDNA under the control of two promoters active in alfalfa vascular tissues. In initial greenhouse experiments, enzyme activity in transgenic lines was up to seven-fold greater than in nontransformed control plants; however, field-grown transgenic plants had only a maximum of 1.9-fold more activity than the control. Cell-wall polysaccharide content was lower and Klason lignin content was higher in transgenics compared to the nontransformed control. No significant increase in pectin or uronic acids in the polysaccharide fraction was observed in any line. Xylose increased 15% in most transgenic lines and mannose concentration decreased slightly in all lines. Because of the complexity of pectic polysaccharides and sugar biosynthesis, it may be necessary to manipulate multiple steps in carbohydrate metabolism to alter the pectin content of alfalfa. |
doi_str_mv | 10.1385/ABAB:116:1-3:1167 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_856760969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>856760969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-4dc2ccb57c81b2ad72a071004a3169051390a9432f092eaa2688a53da5f5c9773</originalsourceid><addsrcrecordid>eNqFkk1rHSEUhqW0NB_tD8gmSBdJNpN6dBzH7G6-2kIgXTRrOVedZMLc8VZnaO6-P7xKLjR0kYLwevA5L0d9CTkAdgqilZ8X54vzM4DmDCpRVL0hu4wrUXHe6rcv9jtkL6VHxoC3Ur0nOyCZrDmXu-T31dM6-pT6MNLQ0bvL79X9MNuQPHX-YeNiuPcj5ip6N1ufqPXDUP3CYaDrMGwSWvuAsXee2jBaP04Rp-KFo6P9aKPPvYk-bYbimJEpI_mA4tCVRdPkV-kDeZer5D9udZ_cXV_9uPha3dx--XaxuKlsHnaqame5tUupbAtLjk5xZAoYq1FAo5kEoRnqWvCOae4RedO2KIVD2UmrlRL75PjZdx3Dz9mnyaz6VC6Eow9zMq1sVMN0ozN59CqpQCktuPovCEpKLeo6gyevg00ja51_qHh--gd9DHMc88sY0ApA1cAzBM-QjSGl6Duzjv0K48YAMyUdpqTD5FQYMKJoMT7cGs_LlXd_O7ZxEH8AgEq17g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197117412</pqid></control><display><type>article</type><title>Expression of UDP-glucose dehydrogenase reduces cell-wall polysaccharide concentration and increases xylose content in alfalfa stems</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Samac, Deborah A ; Litterer, Lynn ; Temple, Glena ; Jung, Hans-Joachim G ; Somers, David A</creator><creatorcontrib>Samac, Deborah A ; Litterer, Lynn ; Temple, Glena ; Jung, Hans-Joachim G ; Somers, David A</creatorcontrib><description>The primary cell-wall matrix of most higher plants is composed of large amounts of uronic acids, primarily D-galacturonic acid residues in the backbone of pectic polysaccharides. Uridine diphosphate (UDP)-glucose dehydrogenase is a key enzyme in the biosynthesis of uronic acids. We produced transgenic alfalfa (Medicago sativa) plants expressing a soybean UDP-glucose dehydrogenase cDNA under the control of two promoters active in alfalfa vascular tissues. In initial greenhouse experiments, enzyme activity in transgenic lines was up to seven-fold greater than in nontransformed control plants; however, field-grown transgenic plants had only a maximum of 1.9-fold more activity than the control. Cell-wall polysaccharide content was lower and Klason lignin content was higher in transgenics compared to the nontransformed control. No significant increase in pectin or uronic acids in the polysaccharide fraction was observed in any line. Xylose increased 15% in most transgenic lines and mannose concentration decreased slightly in all lines. Because of the complexity of pectic polysaccharides and sugar biosynthesis, it may be necessary to manipulate multiple steps in carbohydrate metabolism to alter the pectin content of alfalfa.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1385/ABAB:116:1-3:1167</identifier><identifier>PMID: 15054225</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Acids ; Alfalfa ; Biomass ; Biosynthesis ; Biotechnology - methods ; Carbohydrate metabolism ; Carbohydrates - chemistry ; Cell Wall - metabolism ; D-Galacturonic acid ; Dehydrogenase ; DNA, Complementary - metabolism ; Enzymatic activity ; Enzymes ; Glucose ; Legumes ; Lignin ; Medicago sativa ; Medicago sativa - metabolism ; Pectin ; Pectins - chemistry ; Plant tissues ; Plants, Genetically Modified ; Polysaccharides ; Polysaccharides - chemistry ; Promoter Regions, Genetic ; Q1 ; Q2 ; Reverse Transcriptase Polymerase Chain Reaction ; RNA - metabolism ; Saccharides ; Soybeans ; Stems ; Studies ; Transgenic plants ; UDP-glucose 6-dehydrogenase ; Uridine ; Uridine Diphosphate Glucose Dehydrogenase - biosynthesis ; Uridine Diphosphate Glucose Dehydrogenase - chemistry ; uronic acid ; Xylose ; Xylose - chemistry</subject><ispartof>Applied biochemistry and biotechnology, 2004, Vol.113-116 (1-3), p.1167-1182</ispartof><rights>Humana Press Inc. 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-4dc2ccb57c81b2ad72a071004a3169051390a9432f092eaa2688a53da5f5c9773</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15054225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samac, Deborah A</creatorcontrib><creatorcontrib>Litterer, Lynn</creatorcontrib><creatorcontrib>Temple, Glena</creatorcontrib><creatorcontrib>Jung, Hans-Joachim G</creatorcontrib><creatorcontrib>Somers, David A</creatorcontrib><title>Expression of UDP-glucose dehydrogenase reduces cell-wall polysaccharide concentration and increases xylose content in alfalfa stems</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><description>The primary cell-wall matrix of most higher plants is composed of large amounts of uronic acids, primarily D-galacturonic acid residues in the backbone of pectic polysaccharides. Uridine diphosphate (UDP)-glucose dehydrogenase is a key enzyme in the biosynthesis of uronic acids. We produced transgenic alfalfa (Medicago sativa) plants expressing a soybean UDP-glucose dehydrogenase cDNA under the control of two promoters active in alfalfa vascular tissues. In initial greenhouse experiments, enzyme activity in transgenic lines was up to seven-fold greater than in nontransformed control plants; however, field-grown transgenic plants had only a maximum of 1.9-fold more activity than the control. Cell-wall polysaccharide content was lower and Klason lignin content was higher in transgenics compared to the nontransformed control. No significant increase in pectin or uronic acids in the polysaccharide fraction was observed in any line. Xylose increased 15% in most transgenic lines and mannose concentration decreased slightly in all lines. Because of the complexity of pectic polysaccharides and sugar biosynthesis, it may be necessary to manipulate multiple steps in carbohydrate metabolism to alter the pectin content of alfalfa.</description><subject>Acids</subject><subject>Alfalfa</subject><subject>Biomass</subject><subject>Biosynthesis</subject><subject>Biotechnology - methods</subject><subject>Carbohydrate metabolism</subject><subject>Carbohydrates - chemistry</subject><subject>Cell Wall - metabolism</subject><subject>D-Galacturonic acid</subject><subject>Dehydrogenase</subject><subject>DNA, Complementary - metabolism</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Glucose</subject><subject>Legumes</subject><subject>Lignin</subject><subject>Medicago sativa</subject><subject>Medicago sativa - metabolism</subject><subject>Pectin</subject><subject>Pectins - chemistry</subject><subject>Plant tissues</subject><subject>Plants, Genetically Modified</subject><subject>Polysaccharides</subject><subject>Polysaccharides - chemistry</subject><subject>Promoter Regions, Genetic</subject><subject>Q1</subject><subject>Q2</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA - metabolism</subject><subject>Saccharides</subject><subject>Soybeans</subject><subject>Stems</subject><subject>Studies</subject><subject>Transgenic plants</subject><subject>UDP-glucose 6-dehydrogenase</subject><subject>Uridine</subject><subject>Uridine Diphosphate Glucose Dehydrogenase - biosynthesis</subject><subject>Uridine Diphosphate Glucose Dehydrogenase - chemistry</subject><subject>uronic acid</subject><subject>Xylose</subject><subject>Xylose - chemistry</subject><issn>0273-2289</issn><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkk1rHSEUhqW0NB_tD8gmSBdJNpN6dBzH7G6-2kIgXTRrOVedZMLc8VZnaO6-P7xKLjR0kYLwevA5L0d9CTkAdgqilZ8X54vzM4DmDCpRVL0hu4wrUXHe6rcv9jtkL6VHxoC3Ur0nOyCZrDmXu-T31dM6-pT6MNLQ0bvL79X9MNuQPHX-YeNiuPcj5ip6N1ufqPXDUP3CYaDrMGwSWvuAsXee2jBaP04Rp-KFo6P9aKPPvYk-bYbimJEpI_mA4tCVRdPkV-kDeZer5D9udZ_cXV_9uPha3dx--XaxuKlsHnaqame5tUupbAtLjk5xZAoYq1FAo5kEoRnqWvCOae4RedO2KIVD2UmrlRL75PjZdx3Dz9mnyaz6VC6Eow9zMq1sVMN0ozN59CqpQCktuPovCEpKLeo6gyevg00ja51_qHh--gd9DHMc88sY0ApA1cAzBM-QjSGl6Duzjv0K48YAMyUdpqTD5FQYMKJoMT7cGs_LlXd_O7ZxEH8AgEq17g</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Samac, Deborah A</creator><creator>Litterer, Lynn</creator><creator>Temple, Glena</creator><creator>Jung, Hans-Joachim G</creator><creator>Somers, David A</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>2004</creationdate><title>Expression of UDP-glucose dehydrogenase reduces cell-wall polysaccharide concentration and increases xylose content in alfalfa stems</title><author>Samac, Deborah A ; Litterer, Lynn ; Temple, Glena ; Jung, Hans-Joachim G ; Somers, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-4dc2ccb57c81b2ad72a071004a3169051390a9432f092eaa2688a53da5f5c9773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acids</topic><topic>Alfalfa</topic><topic>Biomass</topic><topic>Biosynthesis</topic><topic>Biotechnology - methods</topic><topic>Carbohydrate metabolism</topic><topic>Carbohydrates - chemistry</topic><topic>Cell Wall - metabolism</topic><topic>D-Galacturonic acid</topic><topic>Dehydrogenase</topic><topic>DNA, Complementary - metabolism</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Glucose</topic><topic>Legumes</topic><topic>Lignin</topic><topic>Medicago sativa</topic><topic>Medicago sativa - metabolism</topic><topic>Pectin</topic><topic>Pectins - chemistry</topic><topic>Plant tissues</topic><topic>Plants, Genetically Modified</topic><topic>Polysaccharides</topic><topic>Polysaccharides - chemistry</topic><topic>Promoter Regions, Genetic</topic><topic>Q1</topic><topic>Q2</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA - metabolism</topic><topic>Saccharides</topic><topic>Soybeans</topic><topic>Stems</topic><topic>Studies</topic><topic>Transgenic plants</topic><topic>UDP-glucose 6-dehydrogenase</topic><topic>Uridine</topic><topic>Uridine Diphosphate Glucose Dehydrogenase - biosynthesis</topic><topic>Uridine Diphosphate Glucose Dehydrogenase - chemistry</topic><topic>uronic acid</topic><topic>Xylose</topic><topic>Xylose - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samac, Deborah A</creatorcontrib><creatorcontrib>Litterer, Lynn</creatorcontrib><creatorcontrib>Temple, Glena</creatorcontrib><creatorcontrib>Jung, Hans-Joachim G</creatorcontrib><creatorcontrib>Somers, David A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samac, Deborah A</au><au>Litterer, Lynn</au><au>Temple, Glena</au><au>Jung, Hans-Joachim G</au><au>Somers, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression of UDP-glucose dehydrogenase reduces cell-wall polysaccharide concentration and increases xylose content in alfalfa stems</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2004</date><risdate>2004</risdate><volume>113-116</volume><issue>1-3</issue><spage>1167</spage><epage>1182</epage><pages>1167-1182</pages><issn>0273-2289</issn><eissn>0273-2289</eissn><eissn>1559-0291</eissn><abstract>The primary cell-wall matrix of most higher plants is composed of large amounts of uronic acids, primarily D-galacturonic acid residues in the backbone of pectic polysaccharides. Uridine diphosphate (UDP)-glucose dehydrogenase is a key enzyme in the biosynthesis of uronic acids. We produced transgenic alfalfa (Medicago sativa) plants expressing a soybean UDP-glucose dehydrogenase cDNA under the control of two promoters active in alfalfa vascular tissues. In initial greenhouse experiments, enzyme activity in transgenic lines was up to seven-fold greater than in nontransformed control plants; however, field-grown transgenic plants had only a maximum of 1.9-fold more activity than the control. Cell-wall polysaccharide content was lower and Klason lignin content was higher in transgenics compared to the nontransformed control. No significant increase in pectin or uronic acids in the polysaccharide fraction was observed in any line. Xylose increased 15% in most transgenic lines and mannose concentration decreased slightly in all lines. Because of the complexity of pectic polysaccharides and sugar biosynthesis, it may be necessary to manipulate multiple steps in carbohydrate metabolism to alter the pectin content of alfalfa.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>15054225</pmid><doi>10.1385/ABAB:116:1-3:1167</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-2289 |
ispartof | Applied biochemistry and biotechnology, 2004, Vol.113-116 (1-3), p.1167-1182 |
issn | 0273-2289 0273-2289 1559-0291 |
language | eng |
recordid | cdi_proquest_miscellaneous_856760969 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Acids Alfalfa Biomass Biosynthesis Biotechnology - methods Carbohydrate metabolism Carbohydrates - chemistry Cell Wall - metabolism D-Galacturonic acid Dehydrogenase DNA, Complementary - metabolism Enzymatic activity Enzymes Glucose Legumes Lignin Medicago sativa Medicago sativa - metabolism Pectin Pectins - chemistry Plant tissues Plants, Genetically Modified Polysaccharides Polysaccharides - chemistry Promoter Regions, Genetic Q1 Q2 Reverse Transcriptase Polymerase Chain Reaction RNA - metabolism Saccharides Soybeans Stems Studies Transgenic plants UDP-glucose 6-dehydrogenase Uridine Uridine Diphosphate Glucose Dehydrogenase - biosynthesis Uridine Diphosphate Glucose Dehydrogenase - chemistry uronic acid Xylose Xylose - chemistry |
title | Expression of UDP-glucose dehydrogenase reduces cell-wall polysaccharide concentration and increases xylose content in alfalfa stems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20of%20UDP-glucose%20dehydrogenase%20reduces%20cell-wall%20polysaccharide%20concentration%20and%20increases%20xylose%20content%20in%20alfalfa%20stems&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Samac,%20Deborah%20A&rft.date=2004&rft.volume=113-116&rft.issue=1-3&rft.spage=1167&rft.epage=1182&rft.pages=1167-1182&rft.issn=0273-2289&rft.eissn=0273-2289&rft_id=info:doi/10.1385/ABAB:116:1-3:1167&rft_dat=%3Cproquest_cross%3E856760969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197117412&rft_id=info:pmid/15054225&rfr_iscdi=true |