Myosin X regulates netrin receptors and functions in axonal path-finding

Netrins regulate axon path-finding during development, but the underlying mechanisms are not well understood. Here, we provide evidence for the involvement of the unconventional myosin X (Myo X) in netrin-1 function. We find that Myo X interacts with the netrin receptor deleted in colorectal cancer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2007-02, Vol.9 (2), p.184-192
Hauptverfasser: Zhu, Xiao-Juan, Wang, Cheng-Zhong, Dai, Peng-Gao, Xie, Yi, Song, Ning-Ning, Liu, Yu, Du, Quan-Sheng, Mei, Lin, Ding, Yu-Qiang, Xiong, Wen-Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 2
container_start_page 184
container_title Nature cell biology
container_volume 9
creator Zhu, Xiao-Juan
Wang, Cheng-Zhong
Dai, Peng-Gao
Xie, Yi
Song, Ning-Ning
Liu, Yu
Du, Quan-Sheng
Mei, Lin
Ding, Yu-Qiang
Xiong, Wen-Cheng
description Netrins regulate axon path-finding during development, but the underlying mechanisms are not well understood. Here, we provide evidence for the involvement of the unconventional myosin X (Myo X) in netrin-1 function. We find that Myo X interacts with the netrin receptor deleted in colorectal cancer (DCC) and neogenin, a DCC-related protein. Expression of Myo X redistributes DCC to the cell periphery or to the tips of neurites, whereas its silencing prevents DCC distribution in neurites. Moreover, expression of DCC, but not neogenin, stimulates Myo X-mediated formation and elongation of filopodia, suggesting that Myo X function may be differentially regulated by DCC and neogenin. The involvement of Myo X in netrin-1 function was further supported by the effects of inhibiting Myo X function in neurons. Cortical explants derived from mouse embryos expressing a motor-less Myo X exhibit reduced neurite outgrowth in response to netrin-1 and chick commissural neurons expressing the motor-less Myo X, or in which Myo X is silenced using microRNA (miRNA), show impaired axon projection in vivo . Taken together, these results identify a novel role for Myo X in regulating netrin-1 function.
doi_str_mv 10.1038/ncb1535
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856759916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183056630</galeid><sourcerecordid>A183056630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-a2e082aba272805b3fe010e39baa9a2a3c3f3a5ed9d0715a1e32c46c5ccc297e3</originalsourceid><addsrcrecordid>eNqF0ktrHSEUAGApLc2jpf-gDF20zWJSH6OOyxCaJpBQ6AO6G844Z6aGuXqrDiT_voY7EJJFggvF8x3x6CHkHaPHjIr2i7c9k0K-IPus0apulDYv79ZK1loYvkcOUrqmlDUN1a_JHtNcaK35Pjm_ug3J-epPFXFaZsiYKo85lq2IFrc5xFSBH6px8Ta74FNVQnATPMzVFvLfenR-cH56Q16NMCd8u86H5PfZ11-n5_Xl928XpyeXtW20zDVwpC2HHrjmLZW9GJEyisL0AAY4CCtGARIHM1DNJDAU3DbKSmstNxrFIfm0O3cbw78FU-42LlmcZ_AYltS1UmlpDFNFfnxSqtYoIal8FjIjpRANL_DDI3gdllheInWcc9G2zLCCjndoghk758eQI9gyBtw4GzyOruyfsFZQqZSgJeHoQUIxGW_yBEtK3cXPHw_tWr2NIaWIY7eNbgPxtmO0u-uEbu2EIt-vd136DQ73bv36Aj7vQCohP2G8L-bxWf8BtlC5WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222388191</pqid></control><display><type>article</type><title>Myosin X regulates netrin receptors and functions in axonal path-finding</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Zhu, Xiao-Juan ; Wang, Cheng-Zhong ; Dai, Peng-Gao ; Xie, Yi ; Song, Ning-Ning ; Liu, Yu ; Du, Quan-Sheng ; Mei, Lin ; Ding, Yu-Qiang ; Xiong, Wen-Cheng</creator><creatorcontrib>Zhu, Xiao-Juan ; Wang, Cheng-Zhong ; Dai, Peng-Gao ; Xie, Yi ; Song, Ning-Ning ; Liu, Yu ; Du, Quan-Sheng ; Mei, Lin ; Ding, Yu-Qiang ; Xiong, Wen-Cheng</creatorcontrib><description>Netrins regulate axon path-finding during development, but the underlying mechanisms are not well understood. Here, we provide evidence for the involvement of the unconventional myosin X (Myo X) in netrin-1 function. We find that Myo X interacts with the netrin receptor deleted in colorectal cancer (DCC) and neogenin, a DCC-related protein. Expression of Myo X redistributes DCC to the cell periphery or to the tips of neurites, whereas its silencing prevents DCC distribution in neurites. Moreover, expression of DCC, but not neogenin, stimulates Myo X-mediated formation and elongation of filopodia, suggesting that Myo X function may be differentially regulated by DCC and neogenin. The involvement of Myo X in netrin-1 function was further supported by the effects of inhibiting Myo X function in neurons. Cortical explants derived from mouse embryos expressing a motor-less Myo X exhibit reduced neurite outgrowth in response to netrin-1 and chick commissural neurons expressing the motor-less Myo X, or in which Myo X is silenced using microRNA (miRNA), show impaired axon projection in vivo . Taken together, these results identify a novel role for Myo X in regulating netrin-1 function.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb1535</identifier><identifier>PMID: 17237772</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Axons - physiology ; Biomedical and Life Sciences ; Cancer Research ; Cell Biology ; Cell Line ; Cercopithecus aethiops ; Chick Embryo ; Colorectal cancer ; Colorectal carcinoma ; COS Cells ; Development and progression ; Developmental Biology ; Embryos ; Genetic aspects ; Humans ; Kinases ; letter ; Life Sciences ; Membrane Proteins - metabolism ; Mice ; MicroRNAs ; MicroRNAs - pharmacology ; Molecular Sequence Data ; Myosin ; Myosins - drug effects ; Myosins - metabolism ; Nerve Growth Factors - metabolism ; Nerve Growth Factors - pharmacology ; Netrin Receptors ; Netrin-1 ; Neurobiology ; Neurosciences ; Physiological aspects ; Proteins ; Rats ; Receptors, Cell Surface - metabolism ; Stem Cells ; Tumor Suppressor Proteins - metabolism ; Tumor Suppressor Proteins - pharmacology</subject><ispartof>Nature cell biology, 2007-02, Vol.9 (2), p.184-192</ispartof><rights>Springer Nature Limited 2007</rights><rights>COPYRIGHT 2007 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-a2e082aba272805b3fe010e39baa9a2a3c3f3a5ed9d0715a1e32c46c5ccc297e3</citedby><cites>FETCH-LOGICAL-c475t-a2e082aba272805b3fe010e39baa9a2a3c3f3a5ed9d0715a1e32c46c5ccc297e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb1535$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb1535$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17237772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xiao-Juan</creatorcontrib><creatorcontrib>Wang, Cheng-Zhong</creatorcontrib><creatorcontrib>Dai, Peng-Gao</creatorcontrib><creatorcontrib>Xie, Yi</creatorcontrib><creatorcontrib>Song, Ning-Ning</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Du, Quan-Sheng</creatorcontrib><creatorcontrib>Mei, Lin</creatorcontrib><creatorcontrib>Ding, Yu-Qiang</creatorcontrib><creatorcontrib>Xiong, Wen-Cheng</creatorcontrib><title>Myosin X regulates netrin receptors and functions in axonal path-finding</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Netrins regulate axon path-finding during development, but the underlying mechanisms are not well understood. Here, we provide evidence for the involvement of the unconventional myosin X (Myo X) in netrin-1 function. We find that Myo X interacts with the netrin receptor deleted in colorectal cancer (DCC) and neogenin, a DCC-related protein. Expression of Myo X redistributes DCC to the cell periphery or to the tips of neurites, whereas its silencing prevents DCC distribution in neurites. Moreover, expression of DCC, but not neogenin, stimulates Myo X-mediated formation and elongation of filopodia, suggesting that Myo X function may be differentially regulated by DCC and neogenin. The involvement of Myo X in netrin-1 function was further supported by the effects of inhibiting Myo X function in neurons. Cortical explants derived from mouse embryos expressing a motor-less Myo X exhibit reduced neurite outgrowth in response to netrin-1 and chick commissural neurons expressing the motor-less Myo X, or in which Myo X is silenced using microRNA (miRNA), show impaired axon projection in vivo . Taken together, these results identify a novel role for Myo X in regulating netrin-1 function.</description><subject>Animals</subject><subject>Axons - physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Line</subject><subject>Cercopithecus aethiops</subject><subject>Chick Embryo</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>COS Cells</subject><subject>Development and progression</subject><subject>Developmental Biology</subject><subject>Embryos</subject><subject>Genetic aspects</subject><subject>Humans</subject><subject>Kinases</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>MicroRNAs</subject><subject>MicroRNAs - pharmacology</subject><subject>Molecular Sequence Data</subject><subject>Myosin</subject><subject>Myosins - drug effects</subject><subject>Myosins - metabolism</subject><subject>Nerve Growth Factors - metabolism</subject><subject>Nerve Growth Factors - pharmacology</subject><subject>Netrin Receptors</subject><subject>Netrin-1</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Rats</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Stem Cells</subject><subject>Tumor Suppressor Proteins - metabolism</subject><subject>Tumor Suppressor Proteins - pharmacology</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0ktrHSEUAGApLc2jpf-gDF20zWJSH6OOyxCaJpBQ6AO6G844Z6aGuXqrDiT_voY7EJJFggvF8x3x6CHkHaPHjIr2i7c9k0K-IPus0apulDYv79ZK1loYvkcOUrqmlDUN1a_JHtNcaK35Pjm_ug3J-epPFXFaZsiYKo85lq2IFrc5xFSBH6px8Ta74FNVQnATPMzVFvLfenR-cH56Q16NMCd8u86H5PfZ11-n5_Xl928XpyeXtW20zDVwpC2HHrjmLZW9GJEyisL0AAY4CCtGARIHM1DNJDAU3DbKSmstNxrFIfm0O3cbw78FU-42LlmcZ_AYltS1UmlpDFNFfnxSqtYoIal8FjIjpRANL_DDI3gdllheInWcc9G2zLCCjndoghk758eQI9gyBtw4GzyOruyfsFZQqZSgJeHoQUIxGW_yBEtK3cXPHw_tWr2NIaWIY7eNbgPxtmO0u-uEbu2EIt-vd136DQ73bv36Aj7vQCohP2G8L-bxWf8BtlC5WA</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Zhu, Xiao-Juan</creator><creator>Wang, Cheng-Zhong</creator><creator>Dai, Peng-Gao</creator><creator>Xie, Yi</creator><creator>Song, Ning-Ning</creator><creator>Liu, Yu</creator><creator>Du, Quan-Sheng</creator><creator>Mei, Lin</creator><creator>Ding, Yu-Qiang</creator><creator>Xiong, Wen-Cheng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20070201</creationdate><title>Myosin X regulates netrin receptors and functions in axonal path-finding</title><author>Zhu, Xiao-Juan ; Wang, Cheng-Zhong ; Dai, Peng-Gao ; Xie, Yi ; Song, Ning-Ning ; Liu, Yu ; Du, Quan-Sheng ; Mei, Lin ; Ding, Yu-Qiang ; Xiong, Wen-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-a2e082aba272805b3fe010e39baa9a2a3c3f3a5ed9d0715a1e32c46c5ccc297e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Axons - physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Line</topic><topic>Cercopithecus aethiops</topic><topic>Chick Embryo</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>COS Cells</topic><topic>Development and progression</topic><topic>Developmental Biology</topic><topic>Embryos</topic><topic>Genetic aspects</topic><topic>Humans</topic><topic>Kinases</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>MicroRNAs</topic><topic>MicroRNAs - pharmacology</topic><topic>Molecular Sequence Data</topic><topic>Myosin</topic><topic>Myosins - drug effects</topic><topic>Myosins - metabolism</topic><topic>Nerve Growth Factors - metabolism</topic><topic>Nerve Growth Factors - pharmacology</topic><topic>Netrin Receptors</topic><topic>Netrin-1</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Rats</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Stem Cells</topic><topic>Tumor Suppressor Proteins - metabolism</topic><topic>Tumor Suppressor Proteins - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiao-Juan</creatorcontrib><creatorcontrib>Wang, Cheng-Zhong</creatorcontrib><creatorcontrib>Dai, Peng-Gao</creatorcontrib><creatorcontrib>Xie, Yi</creatorcontrib><creatorcontrib>Song, Ning-Ning</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Du, Quan-Sheng</creatorcontrib><creatorcontrib>Mei, Lin</creatorcontrib><creatorcontrib>Ding, Yu-Qiang</creatorcontrib><creatorcontrib>Xiong, Wen-Cheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xiao-Juan</au><au>Wang, Cheng-Zhong</au><au>Dai, Peng-Gao</au><au>Xie, Yi</au><au>Song, Ning-Ning</au><au>Liu, Yu</au><au>Du, Quan-Sheng</au><au>Mei, Lin</au><au>Ding, Yu-Qiang</au><au>Xiong, Wen-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myosin X regulates netrin receptors and functions in axonal path-finding</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2007-02-01</date><risdate>2007</risdate><volume>9</volume><issue>2</issue><spage>184</spage><epage>192</epage><pages>184-192</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Netrins regulate axon path-finding during development, but the underlying mechanisms are not well understood. Here, we provide evidence for the involvement of the unconventional myosin X (Myo X) in netrin-1 function. We find that Myo X interacts with the netrin receptor deleted in colorectal cancer (DCC) and neogenin, a DCC-related protein. Expression of Myo X redistributes DCC to the cell periphery or to the tips of neurites, whereas its silencing prevents DCC distribution in neurites. Moreover, expression of DCC, but not neogenin, stimulates Myo X-mediated formation and elongation of filopodia, suggesting that Myo X function may be differentially regulated by DCC and neogenin. The involvement of Myo X in netrin-1 function was further supported by the effects of inhibiting Myo X function in neurons. Cortical explants derived from mouse embryos expressing a motor-less Myo X exhibit reduced neurite outgrowth in response to netrin-1 and chick commissural neurons expressing the motor-less Myo X, or in which Myo X is silenced using microRNA (miRNA), show impaired axon projection in vivo . Taken together, these results identify a novel role for Myo X in regulating netrin-1 function.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>17237772</pmid><doi>10.1038/ncb1535</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2007-02, Vol.9 (2), p.184-192
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_856759916
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects Animals
Axons - physiology
Biomedical and Life Sciences
Cancer Research
Cell Biology
Cell Line
Cercopithecus aethiops
Chick Embryo
Colorectal cancer
Colorectal carcinoma
COS Cells
Development and progression
Developmental Biology
Embryos
Genetic aspects
Humans
Kinases
letter
Life Sciences
Membrane Proteins - metabolism
Mice
MicroRNAs
MicroRNAs - pharmacology
Molecular Sequence Data
Myosin
Myosins - drug effects
Myosins - metabolism
Nerve Growth Factors - metabolism
Nerve Growth Factors - pharmacology
Netrin Receptors
Netrin-1
Neurobiology
Neurosciences
Physiological aspects
Proteins
Rats
Receptors, Cell Surface - metabolism
Stem Cells
Tumor Suppressor Proteins - metabolism
Tumor Suppressor Proteins - pharmacology
title Myosin X regulates netrin receptors and functions in axonal path-finding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myosin%20X%20regulates%20netrin%20receptors%20and%20functions%20in%20axonal%20path-finding&rft.jtitle=Nature%20cell%20biology&rft.au=Zhu,%20Xiao-Juan&rft.date=2007-02-01&rft.volume=9&rft.issue=2&rft.spage=184&rft.epage=192&rft.pages=184-192&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb1535&rft_dat=%3Cgale_proqu%3EA183056630%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222388191&rft_id=info:pmid/17237772&rft_galeid=A183056630&rfr_iscdi=true