Analysis of breast cancer progression using principal component analysis and clustering
We develop a new technique to analyse microarray data which uses a combination of principal components analysis and consensus ensemble k-clustering to find robust clusters and gene markers in the data. We apply our method to a public microarray breast cancer dataset which has expression levels of ge...
Gespeichert in:
Veröffentlicht in: | Journal of biosciences 2007-08, Vol.32 (5), p.1027-1039 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1039 |
---|---|
container_issue | 5 |
container_start_page | 1027 |
container_title | Journal of biosciences |
container_volume | 32 |
creator | Alexe, G Dalgin, G S Ganesan, S Delisi, C Bhanot, G |
description | We develop a new technique to analyse microarray data which uses a combination of principal components analysis and consensus ensemble k-clustering to find robust clusters and gene markers in the data. We apply our method to a public microarray breast cancer dataset which has expression levels of genes in normal samples as well as in three pathological stages of disease; namely, atypical ductal hyperplasia or ADH, ductal carcinoma in situ or DCIS and invasive ductal carcinoma or IDC. Our method averages over clustering techniques and data perturbation to find stable, robust clusters and gene markers. We identify the clusters and their pathways with distinct subtypes of breast cancer (Luminal,Basal and Her2+). We confirm that the cancer phenotype develops early (in early hyperplasia or ADH stage) and find from our analysis that each subtype progresses from ADH to DCIS to IDC along its own specific pathway, as if each was a distinct disease. |
doi_str_mv | 10.1007/s12038-007-0102-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_856759420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1939883501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-857345ee8c352211a47cb44d952685c7fa7f3d980879cce1c2f42b9030d1247e3</originalsourceid><addsrcrecordid>eNp9kTtPwzAUhS0EohD4ASwoYoAp4OtHbI9VxUuqxAJitFzHqVKlTslNhv57XLUIiYHJx9Z3rq7PIeQK6D1Qqh4QGOW6SLKgQFkhjsgZNYoXCrg-TppJWkhjYELOEVeUghGcnpIJKAOCCXlGPqfRtVtsMO_qfNEHh0PuXfShzzd9t-wDYtPFfMQmLtNLE32zcW3uu_WmiyEOufvxu1jlvh1xCIlaXpCT2rUYLg9nRj6eHt9nL8X87fl1Np0Xnks9FFoqLmQIOl0ZA3BC-YUQlZGs1NKr2qmaV0ZTrYz3ATyrBVsYymkFTKjAM3K3n5u2_RoDDnbdoA9t62LoRrRalkoakXLKyO2_ZKm5gDKll5GbP-CqG_v0TbSMl6A0L1mCYA_5vkPsQ21TOGvXby1QuyvH7suxO7krx4rkuT4MHhfrUP06Dm3wb8unibE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236178362</pqid></control><display><type>article</type><title>Analysis of breast cancer progression using principal component analysis and clustering</title><source>MEDLINE</source><source>Indian Academy of Sciences</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Alexe, G ; Dalgin, G S ; Ganesan, S ; Delisi, C ; Bhanot, G</creator><creatorcontrib>Alexe, G ; Dalgin, G S ; Ganesan, S ; Delisi, C ; Bhanot, G</creatorcontrib><description>We develop a new technique to analyse microarray data which uses a combination of principal components analysis and consensus ensemble k-clustering to find robust clusters and gene markers in the data. We apply our method to a public microarray breast cancer dataset which has expression levels of genes in normal samples as well as in three pathological stages of disease; namely, atypical ductal hyperplasia or ADH, ductal carcinoma in situ or DCIS and invasive ductal carcinoma or IDC. Our method averages over clustering techniques and data perturbation to find stable, robust clusters and gene markers. We identify the clusters and their pathways with distinct subtypes of breast cancer (Luminal,Basal and Her2+). We confirm that the cancer phenotype develops early (in early hyperplasia or ADH stage) and find from our analysis that each subtype progresses from ADH to DCIS to IDC along its own specific pathway, as if each was a distinct disease.</description><identifier>ISSN: 0250-5991</identifier><identifier>EISSN: 0973-7138</identifier><identifier>DOI: 10.1007/s12038-007-0102-4</identifier><identifier>PMID: 17914245</identifier><language>eng</language><publisher>India: Springer Nature B.V</publisher><subject>Biomarkers, Tumor - genetics ; Breast cancer ; Breast Neoplasms - genetics ; Breast Neoplasms - metabolism ; Breast Neoplasms - pathology ; Cluster Analysis ; Disease Progression ; Female ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic - physiology ; Humans ; Neoplasm Invasiveness - genetics ; Oligonucleotide Array Sequence Analysis ; Predictive Value of Tests ; Principal Component Analysis ; Principal components analysis ; Signal Transduction - genetics</subject><ispartof>Journal of biosciences, 2007-08, Vol.32 (5), p.1027-1039</ispartof><rights>Indian Academy of Sciences 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-857345ee8c352211a47cb44d952685c7fa7f3d980879cce1c2f42b9030d1247e3</citedby><cites>FETCH-LOGICAL-c358t-857345ee8c352211a47cb44d952685c7fa7f3d980879cce1c2f42b9030d1247e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17914245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alexe, G</creatorcontrib><creatorcontrib>Dalgin, G S</creatorcontrib><creatorcontrib>Ganesan, S</creatorcontrib><creatorcontrib>Delisi, C</creatorcontrib><creatorcontrib>Bhanot, G</creatorcontrib><title>Analysis of breast cancer progression using principal component analysis and clustering</title><title>Journal of biosciences</title><addtitle>J Biosci</addtitle><description>We develop a new technique to analyse microarray data which uses a combination of principal components analysis and consensus ensemble k-clustering to find robust clusters and gene markers in the data. We apply our method to a public microarray breast cancer dataset which has expression levels of genes in normal samples as well as in three pathological stages of disease; namely, atypical ductal hyperplasia or ADH, ductal carcinoma in situ or DCIS and invasive ductal carcinoma or IDC. Our method averages over clustering techniques and data perturbation to find stable, robust clusters and gene markers. We identify the clusters and their pathways with distinct subtypes of breast cancer (Luminal,Basal and Her2+). We confirm that the cancer phenotype develops early (in early hyperplasia or ADH stage) and find from our analysis that each subtype progresses from ADH to DCIS to IDC along its own specific pathway, as if each was a distinct disease.</description><subject>Biomarkers, Tumor - genetics</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - genetics</subject><subject>Breast Neoplasms - metabolism</subject><subject>Breast Neoplasms - pathology</subject><subject>Cluster Analysis</subject><subject>Disease Progression</subject><subject>Female</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic - physiology</subject><subject>Humans</subject><subject>Neoplasm Invasiveness - genetics</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Predictive Value of Tests</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Signal Transduction - genetics</subject><issn>0250-5991</issn><issn>0973-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kTtPwzAUhS0EohD4ASwoYoAp4OtHbI9VxUuqxAJitFzHqVKlTslNhv57XLUIiYHJx9Z3rq7PIeQK6D1Qqh4QGOW6SLKgQFkhjsgZNYoXCrg-TppJWkhjYELOEVeUghGcnpIJKAOCCXlGPqfRtVtsMO_qfNEHh0PuXfShzzd9t-wDYtPFfMQmLtNLE32zcW3uu_WmiyEOufvxu1jlvh1xCIlaXpCT2rUYLg9nRj6eHt9nL8X87fl1Np0Xnks9FFoqLmQIOl0ZA3BC-YUQlZGs1NKr2qmaV0ZTrYz3ATyrBVsYymkFTKjAM3K3n5u2_RoDDnbdoA9t62LoRrRalkoakXLKyO2_ZKm5gDKll5GbP-CqG_v0TbSMl6A0L1mCYA_5vkPsQ21TOGvXby1QuyvH7suxO7krx4rkuT4MHhfrUP06Dm3wb8unibE</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Alexe, G</creator><creator>Dalgin, G S</creator><creator>Ganesan, S</creator><creator>Delisi, C</creator><creator>Bhanot, G</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7UA</scope></search><sort><creationdate>20070801</creationdate><title>Analysis of breast cancer progression using principal component analysis and clustering</title><author>Alexe, G ; Dalgin, G S ; Ganesan, S ; Delisi, C ; Bhanot, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-857345ee8c352211a47cb44d952685c7fa7f3d980879cce1c2f42b9030d1247e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biomarkers, Tumor - genetics</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - genetics</topic><topic>Breast Neoplasms - metabolism</topic><topic>Breast Neoplasms - pathology</topic><topic>Cluster Analysis</topic><topic>Disease Progression</topic><topic>Female</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic - physiology</topic><topic>Humans</topic><topic>Neoplasm Invasiveness - genetics</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Predictive Value of Tests</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Signal Transduction - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexe, G</creatorcontrib><creatorcontrib>Dalgin, G S</creatorcontrib><creatorcontrib>Ganesan, S</creatorcontrib><creatorcontrib>Delisi, C</creatorcontrib><creatorcontrib>Bhanot, G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Water Resources Abstracts</collection><jtitle>Journal of biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexe, G</au><au>Dalgin, G S</au><au>Ganesan, S</au><au>Delisi, C</au><au>Bhanot, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of breast cancer progression using principal component analysis and clustering</atitle><jtitle>Journal of biosciences</jtitle><addtitle>J Biosci</addtitle><date>2007-08-01</date><risdate>2007</risdate><volume>32</volume><issue>5</issue><spage>1027</spage><epage>1039</epage><pages>1027-1039</pages><issn>0250-5991</issn><eissn>0973-7138</eissn><abstract>We develop a new technique to analyse microarray data which uses a combination of principal components analysis and consensus ensemble k-clustering to find robust clusters and gene markers in the data. We apply our method to a public microarray breast cancer dataset which has expression levels of genes in normal samples as well as in three pathological stages of disease; namely, atypical ductal hyperplasia or ADH, ductal carcinoma in situ or DCIS and invasive ductal carcinoma or IDC. Our method averages over clustering techniques and data perturbation to find stable, robust clusters and gene markers. We identify the clusters and their pathways with distinct subtypes of breast cancer (Luminal,Basal and Her2+). We confirm that the cancer phenotype develops early (in early hyperplasia or ADH stage) and find from our analysis that each subtype progresses from ADH to DCIS to IDC along its own specific pathway, as if each was a distinct disease.</abstract><cop>India</cop><pub>Springer Nature B.V</pub><pmid>17914245</pmid><doi>10.1007/s12038-007-0102-4</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0250-5991 |
ispartof | Journal of biosciences, 2007-08, Vol.32 (5), p.1027-1039 |
issn | 0250-5991 0973-7138 |
language | eng |
recordid | cdi_proquest_miscellaneous_856759420 |
source | MEDLINE; Indian Academy of Sciences; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings |
subjects | Biomarkers, Tumor - genetics Breast cancer Breast Neoplasms - genetics Breast Neoplasms - metabolism Breast Neoplasms - pathology Cluster Analysis Disease Progression Female Gene Expression Profiling Gene Expression Regulation, Neoplastic - physiology Humans Neoplasm Invasiveness - genetics Oligonucleotide Array Sequence Analysis Predictive Value of Tests Principal Component Analysis Principal components analysis Signal Transduction - genetics |
title | Analysis of breast cancer progression using principal component analysis and clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20breast%20cancer%20progression%20using%20principal%20component%20analysis%20and%20clustering&rft.jtitle=Journal%20of%20biosciences&rft.au=Alexe,%20G&rft.date=2007-08-01&rft.volume=32&rft.issue=5&rft.spage=1027&rft.epage=1039&rft.pages=1027-1039&rft.issn=0250-5991&rft.eissn=0973-7138&rft_id=info:doi/10.1007/s12038-007-0102-4&rft_dat=%3Cproquest_cross%3E1939883501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236178362&rft_id=info:pmid/17914245&rfr_iscdi=true |