Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum

Dopamine is vital for coordinated motion and for association learning linked to behavioral reinforcement. Here we show that the precise overlap of striatal dopaminergic and cholinergic fibers underlies potent control of dopamine release by ongoing nicotinic receptor activity. In mouse striatal slice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2001-12, Vol.4 (12), p.1224-1229
Hauptverfasser: Dani, John A, Zhou, Fu-Ming, Liang, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1229
container_issue 12
container_start_page 1224
container_title Nature neuroscience
container_volume 4
creator Dani, John A
Zhou, Fu-Ming
Liang, Yong
description Dopamine is vital for coordinated motion and for association learning linked to behavioral reinforcement. Here we show that the precise overlap of striatal dopaminergic and cholinergic fibers underlies potent control of dopamine release by ongoing nicotinic receptor activity. In mouse striatal slices, nicotinic antagonists or depletion of endogenous acetylcholine decreased evoked dopamine release by 90%. Nicotine at the concentration experienced by smokers also regulated dopamine release. In mutant mice lacking the β2 nicotinic subunit, evoked dopamine release was dramatically suppressed, and those mice did not show cholinergic regulation of dopamine release. The results offer new perspectives when considering nicotine addiction and the high prevalence of smoking in schizophrenics.
doi_str_mv 10.1038/nn769
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856759375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A185565574</galeid><sourcerecordid>A185565574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-d70169a05a7214af17380c1dec84b955ecf2db41e29db829e4e71bb5041fb323</originalsourceid><addsrcrecordid>eNp9kV1rFTEQhoNYbK39BYIsQitebM13di9LqVooFPTch2x2dpuymxyTrNh_39Q9eGgvJJAMM88M8-ZF6ITgc4JZ88V7JdtX6IgILmuiqHxdYtyqWlIhD9HblO4xxko07Rt0SIgijCt8hDZXvg8j-LCkyjsbsit3Ze_C5DzEscTGZvfb5YcqwrhMJkOq-rA1c6mX1AQmQeV8le-gSjk6k5f5HToYzJTgZPceo83Xq83l9_rm9tv15cVNbYVgue4VJrI1WBhFCTcDUazBlvRgG961QoAdaN9xArTtu4a2wEGRrhOYk6FjlB2jT-vYbQy_FkhZzy5ZmCbjoejRjZBKtEyJQp79lyQNo5w3rIAfX4D3YYm-iNBUcUUUlrJA5ys0mgm080PI0dhyepjLF3oYXMlfkEYIKYTipeHzs4bCZPiTR7OkpK9__njOnq6sjSGlCIPeRjeb-KAJ1k9O679OF-7DbtOlm6HfUztr95pTKfkR4l7Ky0nvV9AX7yL8m7RWHwEj5Lie</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274717066</pqid></control><display><type>article</type><title>Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink (Online service)</source><creator>Dani, John A ; Zhou, Fu-Ming ; Liang, Yong</creator><creatorcontrib>Dani, John A ; Zhou, Fu-Ming ; Liang, Yong</creatorcontrib><description>Dopamine is vital for coordinated motion and for association learning linked to behavioral reinforcement. Here we show that the precise overlap of striatal dopaminergic and cholinergic fibers underlies potent control of dopamine release by ongoing nicotinic receptor activity. In mouse striatal slices, nicotinic antagonists or depletion of endogenous acetylcholine decreased evoked dopamine release by 90%. Nicotine at the concentration experienced by smokers also regulated dopamine release. In mutant mice lacking the β2 nicotinic subunit, evoked dopamine release was dramatically suppressed, and those mice did not show cholinergic regulation of dopamine release. The results offer new perspectives when considering nicotine addiction and the high prevalence of smoking in schizophrenics.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/nn769</identifier><identifier>PMID: 11713470</identifier><identifier>CODEN: NANEFN</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Acetylcholine - metabolism ; Acetylcholinesterase - metabolism ; Action Potentials - drug effects ; Action Potentials - physiology ; Animal Genetics and Genomics ; Animals ; b2 nicotinic subunit gene ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Calcium - metabolism ; Carbon ; Choline O-Acetyltransferase - metabolism ; Cholinergic Fibers - drug effects ; Cholinergic Fibers - metabolism ; Corpus striatum ; Dopamine ; Dopamine - metabolism ; Dopamine - secretion ; Dopaminergic mechanisms ; Enzyme Inhibitors - pharmacology ; Enzymes ; Immunohistochemistry ; Mice ; Mice, Inbred C57BL ; Muscarinic Antagonists - pharmacology ; Neostriatum - cytology ; Neostriatum - drug effects ; Neostriatum - metabolism ; Neurobiology ; Neuromuscular Depolarizing Agents - pharmacology ; Neurons - drug effects ; Neurons - metabolism ; Neurosciences ; Nicotine ; Nicotine - pharmacology ; Nicotinic Antagonists - pharmacology ; Nicotinic receptors ; Positive reinforcement ; Properties ; Publishing ; Receptors, Nicotinic - drug effects ; Receptors, Nicotinic - metabolism ; Smoking - metabolism ; Smoking - physiopathology ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Tetrodotoxin - pharmacology ; Tyrosine 3-Monooxygenase - metabolism ; Voltammetry</subject><ispartof>Nature neuroscience, 2001-12, Vol.4 (12), p.1224-1229</ispartof><rights>Springer Nature America, Inc. 2001</rights><rights>COPYRIGHT 2001 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-d70169a05a7214af17380c1dec84b955ecf2db41e29db829e4e71bb5041fb323</citedby><cites>FETCH-LOGICAL-c553t-d70169a05a7214af17380c1dec84b955ecf2db41e29db829e4e71bb5041fb323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nn769$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nn769$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11713470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dani, John A</creatorcontrib><creatorcontrib>Zhou, Fu-Ming</creatorcontrib><creatorcontrib>Liang, Yong</creatorcontrib><title>Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Dopamine is vital for coordinated motion and for association learning linked to behavioral reinforcement. Here we show that the precise overlap of striatal dopaminergic and cholinergic fibers underlies potent control of dopamine release by ongoing nicotinic receptor activity. In mouse striatal slices, nicotinic antagonists or depletion of endogenous acetylcholine decreased evoked dopamine release by 90%. Nicotine at the concentration experienced by smokers also regulated dopamine release. In mutant mice lacking the β2 nicotinic subunit, evoked dopamine release was dramatically suppressed, and those mice did not show cholinergic regulation of dopamine release. The results offer new perspectives when considering nicotine addiction and the high prevalence of smoking in schizophrenics.</description><subject>Acetylcholine - metabolism</subject><subject>Acetylcholinesterase - metabolism</subject><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>b2 nicotinic subunit gene</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Calcium - metabolism</subject><subject>Carbon</subject><subject>Choline O-Acetyltransferase - metabolism</subject><subject>Cholinergic Fibers - drug effects</subject><subject>Cholinergic Fibers - metabolism</subject><subject>Corpus striatum</subject><subject>Dopamine</subject><subject>Dopamine - metabolism</subject><subject>Dopamine - secretion</subject><subject>Dopaminergic mechanisms</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzymes</subject><subject>Immunohistochemistry</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Muscarinic Antagonists - pharmacology</subject><subject>Neostriatum - cytology</subject><subject>Neostriatum - drug effects</subject><subject>Neostriatum - metabolism</subject><subject>Neurobiology</subject><subject>Neuromuscular Depolarizing Agents - pharmacology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Nicotine</subject><subject>Nicotine - pharmacology</subject><subject>Nicotinic Antagonists - pharmacology</subject><subject>Nicotinic receptors</subject><subject>Positive reinforcement</subject><subject>Properties</subject><subject>Publishing</subject><subject>Receptors, Nicotinic - drug effects</subject><subject>Receptors, Nicotinic - metabolism</subject><subject>Smoking - metabolism</subject><subject>Smoking - physiopathology</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Tetrodotoxin - pharmacology</subject><subject>Tyrosine 3-Monooxygenase - metabolism</subject><subject>Voltammetry</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1rFTEQhoNYbK39BYIsQitebM13di9LqVooFPTch2x2dpuymxyTrNh_39Q9eGgvJJAMM88M8-ZF6ITgc4JZ88V7JdtX6IgILmuiqHxdYtyqWlIhD9HblO4xxko07Rt0SIgijCt8hDZXvg8j-LCkyjsbsit3Ze_C5DzEscTGZvfb5YcqwrhMJkOq-rA1c6mX1AQmQeV8le-gSjk6k5f5HToYzJTgZPceo83Xq83l9_rm9tv15cVNbYVgue4VJrI1WBhFCTcDUazBlvRgG961QoAdaN9xArTtu4a2wEGRrhOYk6FjlB2jT-vYbQy_FkhZzy5ZmCbjoejRjZBKtEyJQp79lyQNo5w3rIAfX4D3YYm-iNBUcUUUlrJA5ys0mgm080PI0dhyepjLF3oYXMlfkEYIKYTipeHzs4bCZPiTR7OkpK9__njOnq6sjSGlCIPeRjeb-KAJ1k9O679OF-7DbtOlm6HfUztr95pTKfkR4l7Ky0nvV9AX7yL8m7RWHwEj5Lie</recordid><startdate>20011201</startdate><enddate>20011201</enddate><creator>Dani, John A</creator><creator>Zhou, Fu-Ming</creator><creator>Liang, Yong</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20011201</creationdate><title>Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum</title><author>Dani, John A ; Zhou, Fu-Ming ; Liang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-d70169a05a7214af17380c1dec84b955ecf2db41e29db829e4e71bb5041fb323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Acetylcholine - metabolism</topic><topic>Acetylcholinesterase - metabolism</topic><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>b2 nicotinic subunit gene</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Calcium - metabolism</topic><topic>Carbon</topic><topic>Choline O-Acetyltransferase - metabolism</topic><topic>Cholinergic Fibers - drug effects</topic><topic>Cholinergic Fibers - metabolism</topic><topic>Corpus striatum</topic><topic>Dopamine</topic><topic>Dopamine - metabolism</topic><topic>Dopamine - secretion</topic><topic>Dopaminergic mechanisms</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzymes</topic><topic>Immunohistochemistry</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Muscarinic Antagonists - pharmacology</topic><topic>Neostriatum - cytology</topic><topic>Neostriatum - drug effects</topic><topic>Neostriatum - metabolism</topic><topic>Neurobiology</topic><topic>Neuromuscular Depolarizing Agents - pharmacology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Nicotine</topic><topic>Nicotine - pharmacology</topic><topic>Nicotinic Antagonists - pharmacology</topic><topic>Nicotinic receptors</topic><topic>Positive reinforcement</topic><topic>Properties</topic><topic>Publishing</topic><topic>Receptors, Nicotinic - drug effects</topic><topic>Receptors, Nicotinic - metabolism</topic><topic>Smoking - metabolism</topic><topic>Smoking - physiopathology</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Tetrodotoxin - pharmacology</topic><topic>Tyrosine 3-Monooxygenase - metabolism</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dani, John A</creatorcontrib><creatorcontrib>Zhou, Fu-Ming</creatorcontrib><creatorcontrib>Liang, Yong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dani, John A</au><au>Zhou, Fu-Ming</au><au>Liang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2001-12-01</date><risdate>2001</risdate><volume>4</volume><issue>12</issue><spage>1224</spage><epage>1229</epage><pages>1224-1229</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><coden>NANEFN</coden><abstract>Dopamine is vital for coordinated motion and for association learning linked to behavioral reinforcement. Here we show that the precise overlap of striatal dopaminergic and cholinergic fibers underlies potent control of dopamine release by ongoing nicotinic receptor activity. In mouse striatal slices, nicotinic antagonists or depletion of endogenous acetylcholine decreased evoked dopamine release by 90%. Nicotine at the concentration experienced by smokers also regulated dopamine release. In mutant mice lacking the β2 nicotinic subunit, evoked dopamine release was dramatically suppressed, and those mice did not show cholinergic regulation of dopamine release. The results offer new perspectives when considering nicotine addiction and the high prevalence of smoking in schizophrenics.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>11713470</pmid><doi>10.1038/nn769</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2001-12, Vol.4 (12), p.1224-1229
issn 1097-6256
1546-1726
language eng
recordid cdi_proquest_miscellaneous_856759375
source MEDLINE; Nature; SpringerLink (Online service)
subjects Acetylcholine - metabolism
Acetylcholinesterase - metabolism
Action Potentials - drug effects
Action Potentials - physiology
Animal Genetics and Genomics
Animals
b2 nicotinic subunit gene
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Calcium - metabolism
Carbon
Choline O-Acetyltransferase - metabolism
Cholinergic Fibers - drug effects
Cholinergic Fibers - metabolism
Corpus striatum
Dopamine
Dopamine - metabolism
Dopamine - secretion
Dopaminergic mechanisms
Enzyme Inhibitors - pharmacology
Enzymes
Immunohistochemistry
Mice
Mice, Inbred C57BL
Muscarinic Antagonists - pharmacology
Neostriatum - cytology
Neostriatum - drug effects
Neostriatum - metabolism
Neurobiology
Neuromuscular Depolarizing Agents - pharmacology
Neurons - drug effects
Neurons - metabolism
Neurosciences
Nicotine
Nicotine - pharmacology
Nicotinic Antagonists - pharmacology
Nicotinic receptors
Positive reinforcement
Properties
Publishing
Receptors, Nicotinic - drug effects
Receptors, Nicotinic - metabolism
Smoking - metabolism
Smoking - physiopathology
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
Tetrodotoxin - pharmacology
Tyrosine 3-Monooxygenase - metabolism
Voltammetry
title Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endogenous%20nicotinic%20cholinergic%20activity%20regulates%20dopamine%20release%20in%20the%20striatum&rft.jtitle=Nature%20neuroscience&rft.au=Dani,%20John%20A&rft.date=2001-12-01&rft.volume=4&rft.issue=12&rft.spage=1224&rft.epage=1229&rft.pages=1224-1229&rft.issn=1097-6256&rft.eissn=1546-1726&rft.coden=NANEFN&rft_id=info:doi/10.1038/nn769&rft_dat=%3Cgale_proqu%3EA185565574%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274717066&rft_id=info:pmid/11713470&rft_galeid=A185565574&rfr_iscdi=true