Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci

The study of genetic diversity between a crop and its wild relatives may yield fundamental insights into evolutionary history and the process of domestication. In this study, we genotyped a sample of 303 accessions of domesticated soybean (Glycine max) and its wild progenitor Glycine soja with 99 mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2010-10, Vol.188 (1), p.242-253
Hauptverfasser: Li, Ying-Hui, Li, Wei, Zhang, Chen, Yang, Liang, Chang, Ru-Zhen, Gaut, Brandon S, Qiu, Li-Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 253
container_issue 1
container_start_page 242
container_title The New phytologist
container_volume 188
creator Li, Ying-Hui
Li, Wei
Zhang, Chen
Yang, Liang
Chang, Ru-Zhen
Gaut, Brandon S
Qiu, Li-Juan
description The study of genetic diversity between a crop and its wild relatives may yield fundamental insights into evolutionary history and the process of domestication. In this study, we genotyped a sample of 303 accessions of domesticated soybean (Glycine max) and its wild progenitor Glycine soja with 99 microsatellite markers and 554 single-nucleotide polymorphism (SNP) markers. The simple sequence repeat (SSR) loci averaged 21.5 alleles per locus and overall Nei's gene diversity of 0.77. The SNPs had substantially lower genetic diversity (0.35) than SSRs. A SSR analyses indicated that G. soja exhibited higher diversity than G. max, but SNPs provided a slightly different snapshot of diversity between the two taxa. For both marker types, the primary division of genetic diversity was between the wild and domesticated accessions. Within taxa, G. max consisted of four geographic regions in China. G. soja formed six subgroups. Genealogical analyses indicated that cultivated soybean tended to form a monophyletic clade with respect to G. soja. G. soja and G. max represent distinct germplasm pools. Limited evidence of admixture was discovered between these two species. Overall, our analyses are consistent with the origin of G. max from regions along the Yellow River of China.
doi_str_mv 10.1111/j.1469-8137.2010.03344.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856758066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40856396</jstor_id><sourcerecordid>40856396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5944-30145468d0a47fe6356873de2e86703f4913af7ab18f8fcacfbc0b714f0f30a3</originalsourceid><addsrcrecordid>eNqNkcFu1DAURSMEokPhEwDvoIsMduzYzoIFqsoUqQIkisTOcpznwaMkTu0MnXwOf4rTlGFZvLH13r3X9jtZhghek7Te7daE8SqXhIp1gVMVU8rY-vAoWx0bj7MVxoXMOeM_TrJnMe4wxlXJi6fZSYE5kRVhq-z3BnoYnUGN-wUhunFCrkeN7yCmqh6hQdFPNegevd20k3E9oE4fzpDuG-TGiG5d26Ah-C30bvThnyr6nT5DNpWi64Y2FeBmD70BFGAAPd4lRNdvW8j7vWnBj64BNPh26nwYfrrYodYb9zx7YnUb4cX9fppdf7y4Pr_Mr75sPp1_uMpNWTGWU0xYybhssGbCAqcll4I2UIDkAlPLKkK1Fbom0kprtLG1wbUgzGJLsaan2ZslNv0lvTOOqnPRQNvqHvw-KllyUUrM-cPKggjKhCgeVIqyJDLxqpJSLkoTfIwBrBqC63SYFMFqRq52aiarZrJqRq7ukKtDsr66v2Rfd9AcjX8ZJ8H7RZBQwfTfwerz18v5lPwvF_8uJsBHP8NpJLSa5_F66Vvtld4GF9X3bykpEZGSUULpHzw8z5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755184699</pqid></control><display><type>article</type><title>Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci</title><source>Jstor Complete Legacy</source><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Ying-Hui ; Li, Wei ; Zhang, Chen ; Yang, Liang ; Chang, Ru-Zhen ; Gaut, Brandon S ; Qiu, Li-Juan</creator><creatorcontrib>Li, Ying-Hui ; Li, Wei ; Zhang, Chen ; Yang, Liang ; Chang, Ru-Zhen ; Gaut, Brandon S ; Qiu, Li-Juan</creatorcontrib><description>The study of genetic diversity between a crop and its wild relatives may yield fundamental insights into evolutionary history and the process of domestication. In this study, we genotyped a sample of 303 accessions of domesticated soybean (Glycine max) and its wild progenitor Glycine soja with 99 microsatellite markers and 554 single-nucleotide polymorphism (SNP) markers. The simple sequence repeat (SSR) loci averaged 21.5 alleles per locus and overall Nei's gene diversity of 0.77. The SNPs had substantially lower genetic diversity (0.35) than SSRs. A SSR analyses indicated that G. soja exhibited higher diversity than G. max, but SNPs provided a slightly different snapshot of diversity between the two taxa. For both marker types, the primary division of genetic diversity was between the wild and domesticated accessions. Within taxa, G. max consisted of four geographic regions in China. G. soja formed six subgroups. Genealogical analyses indicated that cultivated soybean tended to form a monophyletic clade with respect to G. soja. G. soja and G. max represent distinct germplasm pools. Limited evidence of admixture was discovered between these two species. Overall, our analyses are consistent with the origin of G. max from regions along the Yellow River of China.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2010.03344.x</identifier><identifier>PMID: 20618914</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Agriculture ; Alleles ; Bayes Theorem ; Cluster Analysis ; Datasets ; diversity pattern ; domestication ; Evolutionary genetics ; Genetic diversity ; Genetic loci ; Genetic Loci - genetics ; Genetic Variation ; Genetics, Population ; Geographic regions ; geographic variation ; geographical variation ; Geography ; Glycine max ; Glycine max - genetics ; Glycine soja ; introgression ; Minisatellite Repeats - genetics ; Phylogeny ; Plant domestication ; Polymorphism, Single Nucleotide - genetics ; Population Dynamics ; Population parameters ; Population structure ; Soybeans</subject><ispartof>The New phytologist, 2010-10, Vol.188 (1), p.242-253</ispartof><rights>2010 New Phytologist Trust</rights><rights>The Authors (2010). Journal compilation © New Phytologist Trust (2010)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5944-30145468d0a47fe6356873de2e86703f4913af7ab18f8fcacfbc0b714f0f30a3</citedby><cites>FETCH-LOGICAL-c5944-30145468d0a47fe6356873de2e86703f4913af7ab18f8fcacfbc0b714f0f30a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40856396$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40856396$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20618914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Ying-Hui</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Yang, Liang</creatorcontrib><creatorcontrib>Chang, Ru-Zhen</creatorcontrib><creatorcontrib>Gaut, Brandon S</creatorcontrib><creatorcontrib>Qiu, Li-Juan</creatorcontrib><title>Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>The study of genetic diversity between a crop and its wild relatives may yield fundamental insights into evolutionary history and the process of domestication. In this study, we genotyped a sample of 303 accessions of domesticated soybean (Glycine max) and its wild progenitor Glycine soja with 99 microsatellite markers and 554 single-nucleotide polymorphism (SNP) markers. The simple sequence repeat (SSR) loci averaged 21.5 alleles per locus and overall Nei's gene diversity of 0.77. The SNPs had substantially lower genetic diversity (0.35) than SSRs. A SSR analyses indicated that G. soja exhibited higher diversity than G. max, but SNPs provided a slightly different snapshot of diversity between the two taxa. For both marker types, the primary division of genetic diversity was between the wild and domesticated accessions. Within taxa, G. max consisted of four geographic regions in China. G. soja formed six subgroups. Genealogical analyses indicated that cultivated soybean tended to form a monophyletic clade with respect to G. soja. G. soja and G. max represent distinct germplasm pools. Limited evidence of admixture was discovered between these two species. Overall, our analyses are consistent with the origin of G. max from regions along the Yellow River of China.</description><subject>Agriculture</subject><subject>Alleles</subject><subject>Bayes Theorem</subject><subject>Cluster Analysis</subject><subject>Datasets</subject><subject>diversity pattern</subject><subject>domestication</subject><subject>Evolutionary genetics</subject><subject>Genetic diversity</subject><subject>Genetic loci</subject><subject>Genetic Loci - genetics</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Geographic regions</subject><subject>geographic variation</subject><subject>geographical variation</subject><subject>Geography</subject><subject>Glycine max</subject><subject>Glycine max - genetics</subject><subject>Glycine soja</subject><subject>introgression</subject><subject>Minisatellite Repeats - genetics</subject><subject>Phylogeny</subject><subject>Plant domestication</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Population Dynamics</subject><subject>Population parameters</subject><subject>Population structure</subject><subject>Soybeans</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAURSMEokPhEwDvoIsMduzYzoIFqsoUqQIkisTOcpznwaMkTu0MnXwOf4rTlGFZvLH13r3X9jtZhghek7Te7daE8SqXhIp1gVMVU8rY-vAoWx0bj7MVxoXMOeM_TrJnMe4wxlXJi6fZSYE5kRVhq-z3BnoYnUGN-wUhunFCrkeN7yCmqh6hQdFPNegevd20k3E9oE4fzpDuG-TGiG5d26Ah-C30bvThnyr6nT5DNpWi64Y2FeBmD70BFGAAPd4lRNdvW8j7vWnBj64BNPh26nwYfrrYodYb9zx7YnUb4cX9fppdf7y4Pr_Mr75sPp1_uMpNWTGWU0xYybhssGbCAqcll4I2UIDkAlPLKkK1Fbom0kprtLG1wbUgzGJLsaan2ZslNv0lvTOOqnPRQNvqHvw-KllyUUrM-cPKggjKhCgeVIqyJDLxqpJSLkoTfIwBrBqC63SYFMFqRq52aiarZrJqRq7ukKtDsr66v2Rfd9AcjX8ZJ8H7RZBQwfTfwerz18v5lPwvF_8uJsBHP8NpJLSa5_F66Vvtld4GF9X3bykpEZGSUULpHzw8z5g</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Li, Ying-Hui</creator><creator>Li, Wei</creator><creator>Zhang, Chen</creator><creator>Yang, Liang</creator><creator>Chang, Ru-Zhen</creator><creator>Gaut, Brandon S</creator><creator>Qiu, Li-Juan</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7TM</scope></search><sort><creationdate>201010</creationdate><title>Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci</title><author>Li, Ying-Hui ; Li, Wei ; Zhang, Chen ; Yang, Liang ; Chang, Ru-Zhen ; Gaut, Brandon S ; Qiu, Li-Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5944-30145468d0a47fe6356873de2e86703f4913af7ab18f8fcacfbc0b714f0f30a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agriculture</topic><topic>Alleles</topic><topic>Bayes Theorem</topic><topic>Cluster Analysis</topic><topic>Datasets</topic><topic>diversity pattern</topic><topic>domestication</topic><topic>Evolutionary genetics</topic><topic>Genetic diversity</topic><topic>Genetic loci</topic><topic>Genetic Loci - genetics</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Geographic regions</topic><topic>geographic variation</topic><topic>geographical variation</topic><topic>Geography</topic><topic>Glycine max</topic><topic>Glycine max - genetics</topic><topic>Glycine soja</topic><topic>introgression</topic><topic>Minisatellite Repeats - genetics</topic><topic>Phylogeny</topic><topic>Plant domestication</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Population Dynamics</topic><topic>Population parameters</topic><topic>Population structure</topic><topic>Soybeans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ying-Hui</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Yang, Liang</creatorcontrib><creatorcontrib>Chang, Ru-Zhen</creatorcontrib><creatorcontrib>Gaut, Brandon S</creatorcontrib><creatorcontrib>Qiu, Li-Juan</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Nucleic Acids Abstracts</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ying-Hui</au><au>Li, Wei</au><au>Zhang, Chen</au><au>Yang, Liang</au><au>Chang, Ru-Zhen</au><au>Gaut, Brandon S</au><au>Qiu, Li-Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2010-10</date><risdate>2010</risdate><volume>188</volume><issue>1</issue><spage>242</spage><epage>253</epage><pages>242-253</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>The study of genetic diversity between a crop and its wild relatives may yield fundamental insights into evolutionary history and the process of domestication. In this study, we genotyped a sample of 303 accessions of domesticated soybean (Glycine max) and its wild progenitor Glycine soja with 99 microsatellite markers and 554 single-nucleotide polymorphism (SNP) markers. The simple sequence repeat (SSR) loci averaged 21.5 alleles per locus and overall Nei's gene diversity of 0.77. The SNPs had substantially lower genetic diversity (0.35) than SSRs. A SSR analyses indicated that G. soja exhibited higher diversity than G. max, but SNPs provided a slightly different snapshot of diversity between the two taxa. For both marker types, the primary division of genetic diversity was between the wild and domesticated accessions. Within taxa, G. max consisted of four geographic regions in China. G. soja formed six subgroups. Genealogical analyses indicated that cultivated soybean tended to form a monophyletic clade with respect to G. soja. G. soja and G. max represent distinct germplasm pools. Limited evidence of admixture was discovered between these two species. Overall, our analyses are consistent with the origin of G. max from regions along the Yellow River of China.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>20618914</pmid><doi>10.1111/j.1469-8137.2010.03344.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2010-10, Vol.188 (1), p.242-253
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_856758066
source Jstor Complete Legacy; Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Agriculture
Alleles
Bayes Theorem
Cluster Analysis
Datasets
diversity pattern
domestication
Evolutionary genetics
Genetic diversity
Genetic loci
Genetic Loci - genetics
Genetic Variation
Genetics, Population
Geographic regions
geographic variation
geographical variation
Geography
Glycine max
Glycine max - genetics
Glycine soja
introgression
Minisatellite Repeats - genetics
Phylogeny
Plant domestication
Polymorphism, Single Nucleotide - genetics
Population Dynamics
Population parameters
Population structure
Soybeans
title Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20diversity%20in%20domesticated%20soybean%20(Glycine%20max)%20and%20its%20wild%20progenitor%20(Glycine%20soja)%20for%20simple%20sequence%20repeat%20and%20single-nucleotide%20polymorphism%20loci&rft.jtitle=The%20New%20phytologist&rft.au=Li,%20Ying-Hui&rft.date=2010-10&rft.volume=188&rft.issue=1&rft.spage=242&rft.epage=253&rft.pages=242-253&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/j.1469-8137.2010.03344.x&rft_dat=%3Cjstor_proqu%3E40856396%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755184699&rft_id=info:pmid/20618914&rft_jstor_id=40856396&rfr_iscdi=true