To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs

Homeostasis of element composition is one of the central concepts of ecological stoichiometry. In this context, homeostasis is the resistance to change of consumer body composition in response to the chemical composition of consumer's food. To simplify theoretical analysis, it has generally bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oikos 2010-05, Vol.119 (5), p.741-751
Hauptverfasser: Persson, Jonas, Fink, Patrick, Goto, Akira, Hood, James M., Jonas, Jayne, Kato, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Homeostasis of element composition is one of the central concepts of ecological stoichiometry. In this context, homeostasis is the resistance to change of consumer body composition in response to the chemical composition of consumer's food. To simplify theoretical analysis, it has generally been assumed that autotrophs exhibit flexibility in their composition, while heterotrophs are confined to a constant (strictly homeostatic) body composition. Yet, recent studies suggest that heterotrophs are not universally strictly homeostatic. We examined the degree to which autotrophs and heterotrophs regulate stoichiometric homeostasis (P:C, N:C, N:P, or %P and %N). We conducted a quantitative review and meta-analysis using 132 datasets extracted from 57 literature sources which examined the dependence of organismal stoichiometry on resource stoichiometry. Among individual datasets, there was a wide range of responses from strictly homeostatic to non-homeostatic. Even within heterotrophic organisms, varying levels of homeostasis were observed. Comparing the degree of homeostasis between organisms based on large-scale habitat types using meta-analysis indicated some significant differences between groups. For example, aquatic macroinvertebrates were significantly more homeostatic in terms of P:C than terrestrial invertebrates. Our meta-analysis also confirmed that, with regard to N:P, heterotrophs are significantly more homeostatic than autotrophs. Furthermore, our analysis indicated that the homeostasis parameter 1/H, despite being a potentially useful predictive metric, has to be utilized with caution since it oversimplifies some important aspects of the responses of organisms to elemental imbalances. This critical evaluation of stoichiometric homeostasis contributes to a better understanding of many food-web interactions, which are commonly driven by elemental imbalances between consumers and their resources.
ISSN:0030-1299
1600-0706
DOI:10.1111/j.1600-0706.2009.18545.x