Uranium surroundings in borosilicate glass from neutron and x-ray diffraction and RMC modelling

Neutron and high-energy x-ray diffraction measurements have been performed on multi-component 55SiO(2)·10B(2)O(3)·25Na(2)O·5BaO·ZrO(2) borosilicate host glass loaded with 30 wt% UO(3). Both the traditional Fourier transformation technique and the reverse Monte Carlo simulation of the experimental da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2010-10, Vol.22 (40), p.404206-404206
Hauptverfasser: Fábián, M, Proffen, Th, Ruett, U, Veress, E, Sváb, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 404206
container_issue 40
container_start_page 404206
container_title Journal of physics. Condensed matter
container_volume 22
creator Fábián, M
Proffen, Th
Ruett, U
Veress, E
Sváb, E
description Neutron and high-energy x-ray diffraction measurements have been performed on multi-component 55SiO(2)·10B(2)O(3)·25Na(2)O·5BaO·ZrO(2) borosilicate host glass loaded with 30 wt% UO(3). Both the traditional Fourier transformation technique and the reverse Monte Carlo simulation of the experimental data have been applied to get structural information. It was established that the basic network structure consists of tetrahedral SiO(4) units and of mixed tetrahedral BO(4) and trigonal BO(3) units, similar to the corresponding host glass. Slight changes have been observed in the oxygen surroundings of the Na and Zr modifier cations; both the Na-O and Zr-O distances decrease and a more compact short-range structure has been obtained compared to the host glass. For the U-O correlations two distinct peaks were resolved at 1.84 and 2.24 Å, and for higher distances intermediate-range correlations were observed. Significant correlations have been revealed between U and the network former Si and B atoms. Uranium ions take part in the network forming, which may be the reason for the observed good glassy stability and hydrolytic properties.
doi_str_mv 10.1088/0953-8984/22/40/404206
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_856408572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855694473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-4c394ff2321e1848a834b5398e0e5ab28402c2180525e4163424667d5844b65e3</originalsourceid><addsrcrecordid>eNqNkd9qFDEUh4NU7Lb6CiU3pVfj5s9JJnMpS22FFUFc8C5mMpkSmUm2yQy4b-Oz-GRm2e16UUEhEEi-c86P7yB0RclbSpRakkbwSjUKlowtgZQDjMgXaEG5pJUE9fUMLU7QObrI-TshBBSHV-icUa6kkPUCfdskE_w84jynFOfQ-fCQsQ-4jSlmP3hrJocfBpMz7lMccXDzlGL49dOEDv-oktnhzvd9MnbyMeD96-ePKzzGzg1DafYavezNkN2b432JNu9vv6zuq_Wnuw-rd-vKgmBTBZY30PeMM-qoAmVK0FbwRjnihGmZAsIso4oIJhxQyYGBlHUnFEArheOX6ObQd5vi4-zypEefbclggotz1kpIIErU7D9IIRuAmhdSHkhbXOTker1NfjRppynR-zXovWG9N6wZ00D0YQ2l8Oo4Ym5H153KnrwX4PoImGzNUPQF6_MfjnNWN9AUrjpwPm5Pv38fqrddX3j6nP9H2N-aB6vA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855694473</pqid></control><display><type>article</type><title>Uranium surroundings in borosilicate glass from neutron and x-ray diffraction and RMC modelling</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Fábián, M ; Proffen, Th ; Ruett, U ; Veress, E ; Sváb, E</creator><creatorcontrib>Fábián, M ; Proffen, Th ; Ruett, U ; Veress, E ; Sváb, E</creatorcontrib><description>Neutron and high-energy x-ray diffraction measurements have been performed on multi-component 55SiO(2)·10B(2)O(3)·25Na(2)O·5BaO·ZrO(2) borosilicate host glass loaded with 30 wt% UO(3). Both the traditional Fourier transformation technique and the reverse Monte Carlo simulation of the experimental data have been applied to get structural information. It was established that the basic network structure consists of tetrahedral SiO(4) units and of mixed tetrahedral BO(4) and trigonal BO(3) units, similar to the corresponding host glass. Slight changes have been observed in the oxygen surroundings of the Na and Zr modifier cations; both the Na-O and Zr-O distances decrease and a more compact short-range structure has been obtained compared to the host glass. For the U-O correlations two distinct peaks were resolved at 1.84 and 2.24 Å, and for higher distances intermediate-range correlations were observed. Significant correlations have been revealed between U and the network former Si and B atoms. Uranium ions take part in the network forming, which may be the reason for the observed good glassy stability and hydrolytic properties.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/22/40/404206</identifier><identifier>PMID: 21386567</identifier><identifier>CODEN: JCOMEL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Boron Compounds - chemistry ; Borosilicate glasses ; Computer Simulation ; Condensed matter: structure, mechanical and thermal properties ; Correlation ; Disordered solids ; Exact sciences and technology ; Glass ; Glass - chemistry ; Glasses ; Models, Molecular ; Monte Carlo Method ; Monte Carlo methods ; Networks ; Neutron Diffraction ; Physics ; Silicates - chemistry ; Structure of solids and liquids; crystallography ; Uranium ; Uranium - chemistry ; X-Ray Diffraction ; Zirconium</subject><ispartof>Journal of physics. Condensed matter, 2010-10, Vol.22 (40), p.404206-404206</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-4c394ff2321e1848a834b5398e0e5ab28402c2180525e4163424667d5844b65e3</citedby><cites>FETCH-LOGICAL-c452t-4c394ff2321e1848a834b5398e0e5ab28402c2180525e4163424667d5844b65e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/22/40/404206/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904,53808,53888</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23327949$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21386567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fábián, M</creatorcontrib><creatorcontrib>Proffen, Th</creatorcontrib><creatorcontrib>Ruett, U</creatorcontrib><creatorcontrib>Veress, E</creatorcontrib><creatorcontrib>Sváb, E</creatorcontrib><title>Uranium surroundings in borosilicate glass from neutron and x-ray diffraction and RMC modelling</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>Neutron and high-energy x-ray diffraction measurements have been performed on multi-component 55SiO(2)·10B(2)O(3)·25Na(2)O·5BaO·ZrO(2) borosilicate host glass loaded with 30 wt% UO(3). Both the traditional Fourier transformation technique and the reverse Monte Carlo simulation of the experimental data have been applied to get structural information. It was established that the basic network structure consists of tetrahedral SiO(4) units and of mixed tetrahedral BO(4) and trigonal BO(3) units, similar to the corresponding host glass. Slight changes have been observed in the oxygen surroundings of the Na and Zr modifier cations; both the Na-O and Zr-O distances decrease and a more compact short-range structure has been obtained compared to the host glass. For the U-O correlations two distinct peaks were resolved at 1.84 and 2.24 Å, and for higher distances intermediate-range correlations were observed. Significant correlations have been revealed between U and the network former Si and B atoms. Uranium ions take part in the network forming, which may be the reason for the observed good glassy stability and hydrolytic properties.</description><subject>Boron Compounds - chemistry</subject><subject>Borosilicate glasses</subject><subject>Computer Simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Correlation</subject><subject>Disordered solids</subject><subject>Exact sciences and technology</subject><subject>Glass</subject><subject>Glass - chemistry</subject><subject>Glasses</subject><subject>Models, Molecular</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Networks</subject><subject>Neutron Diffraction</subject><subject>Physics</subject><subject>Silicates - chemistry</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Uranium</subject><subject>Uranium - chemistry</subject><subject>X-Ray Diffraction</subject><subject>Zirconium</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkd9qFDEUh4NU7Lb6CiU3pVfj5s9JJnMpS22FFUFc8C5mMpkSmUm2yQy4b-Oz-GRm2e16UUEhEEi-c86P7yB0RclbSpRakkbwSjUKlowtgZQDjMgXaEG5pJUE9fUMLU7QObrI-TshBBSHV-icUa6kkPUCfdskE_w84jynFOfQ-fCQsQ-4jSlmP3hrJocfBpMz7lMccXDzlGL49dOEDv-oktnhzvd9MnbyMeD96-ePKzzGzg1DafYavezNkN2b432JNu9vv6zuq_Wnuw-rd-vKgmBTBZY30PeMM-qoAmVK0FbwRjnihGmZAsIso4oIJhxQyYGBlHUnFEArheOX6ObQd5vi4-zypEefbclggotz1kpIIErU7D9IIRuAmhdSHkhbXOTker1NfjRppynR-zXovWG9N6wZ00D0YQ2l8Oo4Ym5H153KnrwX4PoImGzNUPQF6_MfjnNWN9AUrjpwPm5Pv38fqrddX3j6nP9H2N-aB6vA</recordid><startdate>20101013</startdate><enddate>20101013</enddate><creator>Fábián, M</creator><creator>Proffen, Th</creator><creator>Ruett, U</creator><creator>Veress, E</creator><creator>Sváb, E</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20101013</creationdate><title>Uranium surroundings in borosilicate glass from neutron and x-ray diffraction and RMC modelling</title><author>Fábián, M ; Proffen, Th ; Ruett, U ; Veress, E ; Sváb, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-4c394ff2321e1848a834b5398e0e5ab28402c2180525e4163424667d5844b65e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Boron Compounds - chemistry</topic><topic>Borosilicate glasses</topic><topic>Computer Simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Correlation</topic><topic>Disordered solids</topic><topic>Exact sciences and technology</topic><topic>Glass</topic><topic>Glass - chemistry</topic><topic>Glasses</topic><topic>Models, Molecular</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Networks</topic><topic>Neutron Diffraction</topic><topic>Physics</topic><topic>Silicates - chemistry</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Uranium</topic><topic>Uranium - chemistry</topic><topic>X-Ray Diffraction</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fábián, M</creatorcontrib><creatorcontrib>Proffen, Th</creatorcontrib><creatorcontrib>Ruett, U</creatorcontrib><creatorcontrib>Veress, E</creatorcontrib><creatorcontrib>Sváb, E</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fábián, M</au><au>Proffen, Th</au><au>Ruett, U</au><au>Veress, E</au><au>Sváb, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uranium surroundings in borosilicate glass from neutron and x-ray diffraction and RMC modelling</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2010-10-13</date><risdate>2010</risdate><volume>22</volume><issue>40</issue><spage>404206</spage><epage>404206</epage><pages>404206-404206</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><coden>JCOMEL</coden><abstract>Neutron and high-energy x-ray diffraction measurements have been performed on multi-component 55SiO(2)·10B(2)O(3)·25Na(2)O·5BaO·ZrO(2) borosilicate host glass loaded with 30 wt% UO(3). Both the traditional Fourier transformation technique and the reverse Monte Carlo simulation of the experimental data have been applied to get structural information. It was established that the basic network structure consists of tetrahedral SiO(4) units and of mixed tetrahedral BO(4) and trigonal BO(3) units, similar to the corresponding host glass. Slight changes have been observed in the oxygen surroundings of the Na and Zr modifier cations; both the Na-O and Zr-O distances decrease and a more compact short-range structure has been obtained compared to the host glass. For the U-O correlations two distinct peaks were resolved at 1.84 and 2.24 Å, and for higher distances intermediate-range correlations were observed. Significant correlations have been revealed between U and the network former Si and B atoms. Uranium ions take part in the network forming, which may be the reason for the observed good glassy stability and hydrolytic properties.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>21386567</pmid><doi>10.1088/0953-8984/22/40/404206</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2010-10, Vol.22 (40), p.404206-404206
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_856408572
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Boron Compounds - chemistry
Borosilicate glasses
Computer Simulation
Condensed matter: structure, mechanical and thermal properties
Correlation
Disordered solids
Exact sciences and technology
Glass
Glass - chemistry
Glasses
Models, Molecular
Monte Carlo Method
Monte Carlo methods
Networks
Neutron Diffraction
Physics
Silicates - chemistry
Structure of solids and liquids
crystallography
Uranium
Uranium - chemistry
X-Ray Diffraction
Zirconium
title Uranium surroundings in borosilicate glass from neutron and x-ray diffraction and RMC modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uranium%20surroundings%20in%20borosilicate%20glass%20from%20neutron%C2%A0and%20x-ray%20diffraction%20and%20RMC%20modelling&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=F%C3%A1bi%C3%A1n,%20M&rft.date=2010-10-13&rft.volume=22&rft.issue=40&rft.spage=404206&rft.epage=404206&rft.pages=404206-404206&rft.issn=0953-8984&rft.eissn=1361-648X&rft.coden=JCOMEL&rft_id=info:doi/10.1088/0953-8984/22/40/404206&rft_dat=%3Cproquest_pubme%3E855694473%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855694473&rft_id=info:pmid/21386567&rfr_iscdi=true