Pathway-based functional analysis of metagenomes

Metagenomic data enables the study of microbes and viruses through their DNA as retrieved directly from the environment in which they live. Functional analysis of metagenomes explores the abundance of gene families, pathways, and systems, rather than their taxonomy. Through such analysis, researcher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational biology 2011-03, Vol.18 (3), p.495-505
Hauptverfasser: Sharon, Itai, Bercovici, Sivan, Pinter, Ron Y, Shlomi, Tomer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 505
container_issue 3
container_start_page 495
container_title Journal of computational biology
container_volume 18
creator Sharon, Itai
Bercovici, Sivan
Pinter, Ron Y
Shlomi, Tomer
description Metagenomic data enables the study of microbes and viruses through their DNA as retrieved directly from the environment in which they live. Functional analysis of metagenomes explores the abundance of gene families, pathways, and systems, rather than their taxonomy. Through such analysis, researchers are able to identify those functional capabilities most important to organisms in the examined environment. Recently, a statistical framework for the functional analysis of metagenomes was described that focuses on gene families. Here we describe two pathway level computational models for functional analysis that take into account important, yet unaddressed issues such as pathway size, gene length, and overlap in gene content among pathways. We test our models over carefully designed simulated data and propose novel approaches for performance evaluation. Our models significantly improve over the current approach with respect to pathway ranking and the computations of relative abundance of pathways in environments.
doi_str_mv 10.1089/cmb.2010.0260
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856407312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A252090088</galeid><sourcerecordid>A252090088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-a8602a8bfa8c3f1269c1c53458357c0a874d290d543cb31587533a40174d2e9d3</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgipvTo1cpeNBL50vSl6bHMfwFgh70HNI0nZW2mU2L7L83ZVMQRAnkx-PzHoEvIacU5hRkdmWafM4gvIAJ2CNTipjGUgixH-4gRIwsTSfkyPs3AMoFpIdkwiiXCAhTAk-6f_3QmzjX3hZRObSmr1yr60iHbeMrH7kyamyvV7Z1jfXH5KDUtbcnu3NGXm6un5d38cPj7f1y8RCbhGEfaymAaZmXWhpeUiYyQw3yBCXH1ICWaVKwDApMuMk5RZki5zoBOtZtVvAZudjOXXfufbC-V03lja1r3Vo3eCVRJJByyoK8_FPSMBpRZJD8TznjkiKILNDzLV3p2qqqLV3faTNytWDIIAOQMqj5LyqswjaVca0tq1D_0RBvG0znvO9sqdZd1ehuoyioMVAVAlVjoGoMNPiz3Y-HvLHFt_5KkH8Cj-CW8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323815069</pqid></control><display><type>article</type><title>Pathway-based functional analysis of metagenomes</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Sharon, Itai ; Bercovici, Sivan ; Pinter, Ron Y ; Shlomi, Tomer</creator><creatorcontrib>Sharon, Itai ; Bercovici, Sivan ; Pinter, Ron Y ; Shlomi, Tomer</creatorcontrib><description>Metagenomic data enables the study of microbes and viruses through their DNA as retrieved directly from the environment in which they live. Functional analysis of metagenomes explores the abundance of gene families, pathways, and systems, rather than their taxonomy. Through such analysis, researchers are able to identify those functional capabilities most important to organisms in the examined environment. Recently, a statistical framework for the functional analysis of metagenomes was described that focuses on gene families. Here we describe two pathway level computational models for functional analysis that take into account important, yet unaddressed issues such as pathway size, gene length, and overlap in gene content among pathways. We test our models over carefully designed simulated data and propose novel approaches for performance evaluation. Our models significantly improve over the current approach with respect to pathway ranking and the computations of relative abundance of pathways in environments.</description><identifier>ISSN: 1066-5277</identifier><identifier>EISSN: 1557-8666</identifier><identifier>DOI: 10.1089/cmb.2010.0260</identifier><identifier>PMID: 21385050</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Abundance ; Artificial Intelligence ; Bacteria - genetics ; Biology ; Chromosome mapping ; Computation ; Computational biology ; Computer Simulation ; Functional analysis ; Genes ; Genome, Bacterial ; Machine learning ; Markov processes ; Mathematical models ; Metagenome ; Metagenomics - methods ; Methods ; Microorganisms ; Models, Genetic ; Pathways</subject><ispartof>Journal of computational biology, 2011-03, Vol.18 (3), p.495-505</ispartof><rights>COPYRIGHT 2011 Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-a8602a8bfa8c3f1269c1c53458357c0a874d290d543cb31587533a40174d2e9d3</citedby><cites>FETCH-LOGICAL-c425t-a8602a8bfa8c3f1269c1c53458357c0a874d290d543cb31587533a40174d2e9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3029,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21385050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharon, Itai</creatorcontrib><creatorcontrib>Bercovici, Sivan</creatorcontrib><creatorcontrib>Pinter, Ron Y</creatorcontrib><creatorcontrib>Shlomi, Tomer</creatorcontrib><title>Pathway-based functional analysis of metagenomes</title><title>Journal of computational biology</title><addtitle>J Comput Biol</addtitle><description>Metagenomic data enables the study of microbes and viruses through their DNA as retrieved directly from the environment in which they live. Functional analysis of metagenomes explores the abundance of gene families, pathways, and systems, rather than their taxonomy. Through such analysis, researchers are able to identify those functional capabilities most important to organisms in the examined environment. Recently, a statistical framework for the functional analysis of metagenomes was described that focuses on gene families. Here we describe two pathway level computational models for functional analysis that take into account important, yet unaddressed issues such as pathway size, gene length, and overlap in gene content among pathways. We test our models over carefully designed simulated data and propose novel approaches for performance evaluation. Our models significantly improve over the current approach with respect to pathway ranking and the computations of relative abundance of pathways in environments.</description><subject>Abundance</subject><subject>Artificial Intelligence</subject><subject>Bacteria - genetics</subject><subject>Biology</subject><subject>Chromosome mapping</subject><subject>Computation</subject><subject>Computational biology</subject><subject>Computer Simulation</subject><subject>Functional analysis</subject><subject>Genes</subject><subject>Genome, Bacterial</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Metagenome</subject><subject>Metagenomics - methods</subject><subject>Methods</subject><subject>Microorganisms</subject><subject>Models, Genetic</subject><subject>Pathways</subject><issn>1066-5277</issn><issn>1557-8666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9LwzAUB_AgipvTo1cpeNBL50vSl6bHMfwFgh70HNI0nZW2mU2L7L83ZVMQRAnkx-PzHoEvIacU5hRkdmWafM4gvIAJ2CNTipjGUgixH-4gRIwsTSfkyPs3AMoFpIdkwiiXCAhTAk-6f_3QmzjX3hZRObSmr1yr60iHbeMrH7kyamyvV7Z1jfXH5KDUtbcnu3NGXm6un5d38cPj7f1y8RCbhGEfaymAaZmXWhpeUiYyQw3yBCXH1ICWaVKwDApMuMk5RZki5zoBOtZtVvAZudjOXXfufbC-V03lja1r3Vo3eCVRJJByyoK8_FPSMBpRZJD8TznjkiKILNDzLV3p2qqqLV3faTNytWDIIAOQMqj5LyqswjaVca0tq1D_0RBvG0znvO9sqdZd1ehuoyioMVAVAlVjoGoMNPiz3Y-HvLHFt_5KkH8Cj-CW8w</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Sharon, Itai</creator><creator>Bercovici, Sivan</creator><creator>Pinter, Ron Y</creator><creator>Shlomi, Tomer</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201103</creationdate><title>Pathway-based functional analysis of metagenomes</title><author>Sharon, Itai ; Bercovici, Sivan ; Pinter, Ron Y ; Shlomi, Tomer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-a8602a8bfa8c3f1269c1c53458357c0a874d290d543cb31587533a40174d2e9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Abundance</topic><topic>Artificial Intelligence</topic><topic>Bacteria - genetics</topic><topic>Biology</topic><topic>Chromosome mapping</topic><topic>Computation</topic><topic>Computational biology</topic><topic>Computer Simulation</topic><topic>Functional analysis</topic><topic>Genes</topic><topic>Genome, Bacterial</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Metagenome</topic><topic>Metagenomics - methods</topic><topic>Methods</topic><topic>Microorganisms</topic><topic>Models, Genetic</topic><topic>Pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharon, Itai</creatorcontrib><creatorcontrib>Bercovici, Sivan</creatorcontrib><creatorcontrib>Pinter, Ron Y</creatorcontrib><creatorcontrib>Shlomi, Tomer</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharon, Itai</au><au>Bercovici, Sivan</au><au>Pinter, Ron Y</au><au>Shlomi, Tomer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathway-based functional analysis of metagenomes</atitle><jtitle>Journal of computational biology</jtitle><addtitle>J Comput Biol</addtitle><date>2011-03</date><risdate>2011</risdate><volume>18</volume><issue>3</issue><spage>495</spage><epage>505</epage><pages>495-505</pages><issn>1066-5277</issn><eissn>1557-8666</eissn><abstract>Metagenomic data enables the study of microbes and viruses through their DNA as retrieved directly from the environment in which they live. Functional analysis of metagenomes explores the abundance of gene families, pathways, and systems, rather than their taxonomy. Through such analysis, researchers are able to identify those functional capabilities most important to organisms in the examined environment. Recently, a statistical framework for the functional analysis of metagenomes was described that focuses on gene families. Here we describe two pathway level computational models for functional analysis that take into account important, yet unaddressed issues such as pathway size, gene length, and overlap in gene content among pathways. We test our models over carefully designed simulated data and propose novel approaches for performance evaluation. Our models significantly improve over the current approach with respect to pathway ranking and the computations of relative abundance of pathways in environments.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>21385050</pmid><doi>10.1089/cmb.2010.0260</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1066-5277
ispartof Journal of computational biology, 2011-03, Vol.18 (3), p.495-505
issn 1066-5277
1557-8666
language eng
recordid cdi_proquest_miscellaneous_856407312
source Mary Ann Liebert Online Subscription; MEDLINE; Alma/SFX Local Collection
subjects Abundance
Artificial Intelligence
Bacteria - genetics
Biology
Chromosome mapping
Computation
Computational biology
Computer Simulation
Functional analysis
Genes
Genome, Bacterial
Machine learning
Markov processes
Mathematical models
Metagenome
Metagenomics - methods
Methods
Microorganisms
Models, Genetic
Pathways
title Pathway-based functional analysis of metagenomes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathway-based%20functional%20analysis%20of%20metagenomes&rft.jtitle=Journal%20of%20computational%20biology&rft.au=Sharon,%20Itai&rft.date=2011-03&rft.volume=18&rft.issue=3&rft.spage=495&rft.epage=505&rft.pages=495-505&rft.issn=1066-5277&rft.eissn=1557-8666&rft_id=info:doi/10.1089/cmb.2010.0260&rft_dat=%3Cgale_proqu%3EA252090088%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323815069&rft_id=info:pmid/21385050&rft_galeid=A252090088&rfr_iscdi=true