Pathway-based functional analysis of metagenomes
Metagenomic data enables the study of microbes and viruses through their DNA as retrieved directly from the environment in which they live. Functional analysis of metagenomes explores the abundance of gene families, pathways, and systems, rather than their taxonomy. Through such analysis, researcher...
Gespeichert in:
Veröffentlicht in: | Journal of computational biology 2011-03, Vol.18 (3), p.495-505 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 505 |
---|---|
container_issue | 3 |
container_start_page | 495 |
container_title | Journal of computational biology |
container_volume | 18 |
creator | Sharon, Itai Bercovici, Sivan Pinter, Ron Y Shlomi, Tomer |
description | Metagenomic data enables the study of microbes and viruses through their DNA as retrieved directly from the environment in which they live. Functional analysis of metagenomes explores the abundance of gene families, pathways, and systems, rather than their taxonomy. Through such analysis, researchers are able to identify those functional capabilities most important to organisms in the examined environment. Recently, a statistical framework for the functional analysis of metagenomes was described that focuses on gene families. Here we describe two pathway level computational models for functional analysis that take into account important, yet unaddressed issues such as pathway size, gene length, and overlap in gene content among pathways. We test our models over carefully designed simulated data and propose novel approaches for performance evaluation. Our models significantly improve over the current approach with respect to pathway ranking and the computations of relative abundance of pathways in environments. |
doi_str_mv | 10.1089/cmb.2010.0260 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_856407312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A252090088</galeid><sourcerecordid>A252090088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-a8602a8bfa8c3f1269c1c53458357c0a874d290d543cb31587533a40174d2e9d3</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgipvTo1cpeNBL50vSl6bHMfwFgh70HNI0nZW2mU2L7L83ZVMQRAnkx-PzHoEvIacU5hRkdmWafM4gvIAJ2CNTipjGUgixH-4gRIwsTSfkyPs3AMoFpIdkwiiXCAhTAk-6f_3QmzjX3hZRObSmr1yr60iHbeMrH7kyamyvV7Z1jfXH5KDUtbcnu3NGXm6un5d38cPj7f1y8RCbhGEfaymAaZmXWhpeUiYyQw3yBCXH1ICWaVKwDApMuMk5RZki5zoBOtZtVvAZudjOXXfufbC-V03lja1r3Vo3eCVRJJByyoK8_FPSMBpRZJD8TznjkiKILNDzLV3p2qqqLV3faTNytWDIIAOQMqj5LyqswjaVca0tq1D_0RBvG0znvO9sqdZd1ehuoyioMVAVAlVjoGoMNPiz3Y-HvLHFt_5KkH8Cj-CW8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1323815069</pqid></control><display><type>article</type><title>Pathway-based functional analysis of metagenomes</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Sharon, Itai ; Bercovici, Sivan ; Pinter, Ron Y ; Shlomi, Tomer</creator><creatorcontrib>Sharon, Itai ; Bercovici, Sivan ; Pinter, Ron Y ; Shlomi, Tomer</creatorcontrib><description>Metagenomic data enables the study of microbes and viruses through their DNA as retrieved directly from the environment in which they live. Functional analysis of metagenomes explores the abundance of gene families, pathways, and systems, rather than their taxonomy. Through such analysis, researchers are able to identify those functional capabilities most important to organisms in the examined environment. Recently, a statistical framework for the functional analysis of metagenomes was described that focuses on gene families. Here we describe two pathway level computational models for functional analysis that take into account important, yet unaddressed issues such as pathway size, gene length, and overlap in gene content among pathways. We test our models over carefully designed simulated data and propose novel approaches for performance evaluation. Our models significantly improve over the current approach with respect to pathway ranking and the computations of relative abundance of pathways in environments.</description><identifier>ISSN: 1066-5277</identifier><identifier>EISSN: 1557-8666</identifier><identifier>DOI: 10.1089/cmb.2010.0260</identifier><identifier>PMID: 21385050</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Abundance ; Artificial Intelligence ; Bacteria - genetics ; Biology ; Chromosome mapping ; Computation ; Computational biology ; Computer Simulation ; Functional analysis ; Genes ; Genome, Bacterial ; Machine learning ; Markov processes ; Mathematical models ; Metagenome ; Metagenomics - methods ; Methods ; Microorganisms ; Models, Genetic ; Pathways</subject><ispartof>Journal of computational biology, 2011-03, Vol.18 (3), p.495-505</ispartof><rights>COPYRIGHT 2011 Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-a8602a8bfa8c3f1269c1c53458357c0a874d290d543cb31587533a40174d2e9d3</citedby><cites>FETCH-LOGICAL-c425t-a8602a8bfa8c3f1269c1c53458357c0a874d290d543cb31587533a40174d2e9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3029,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21385050$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharon, Itai</creatorcontrib><creatorcontrib>Bercovici, Sivan</creatorcontrib><creatorcontrib>Pinter, Ron Y</creatorcontrib><creatorcontrib>Shlomi, Tomer</creatorcontrib><title>Pathway-based functional analysis of metagenomes</title><title>Journal of computational biology</title><addtitle>J Comput Biol</addtitle><description>Metagenomic data enables the study of microbes and viruses through their DNA as retrieved directly from the environment in which they live. Functional analysis of metagenomes explores the abundance of gene families, pathways, and systems, rather than their taxonomy. Through such analysis, researchers are able to identify those functional capabilities most important to organisms in the examined environment. Recently, a statistical framework for the functional analysis of metagenomes was described that focuses on gene families. Here we describe two pathway level computational models for functional analysis that take into account important, yet unaddressed issues such as pathway size, gene length, and overlap in gene content among pathways. We test our models over carefully designed simulated data and propose novel approaches for performance evaluation. Our models significantly improve over the current approach with respect to pathway ranking and the computations of relative abundance of pathways in environments.</description><subject>Abundance</subject><subject>Artificial Intelligence</subject><subject>Bacteria - genetics</subject><subject>Biology</subject><subject>Chromosome mapping</subject><subject>Computation</subject><subject>Computational biology</subject><subject>Computer Simulation</subject><subject>Functional analysis</subject><subject>Genes</subject><subject>Genome, Bacterial</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Metagenome</subject><subject>Metagenomics - methods</subject><subject>Methods</subject><subject>Microorganisms</subject><subject>Models, Genetic</subject><subject>Pathways</subject><issn>1066-5277</issn><issn>1557-8666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9LwzAUB_AgipvTo1cpeNBL50vSl6bHMfwFgh70HNI0nZW2mU2L7L83ZVMQRAnkx-PzHoEvIacU5hRkdmWafM4gvIAJ2CNTipjGUgixH-4gRIwsTSfkyPs3AMoFpIdkwiiXCAhTAk-6f_3QmzjX3hZRObSmr1yr60iHbeMrH7kyamyvV7Z1jfXH5KDUtbcnu3NGXm6un5d38cPj7f1y8RCbhGEfaymAaZmXWhpeUiYyQw3yBCXH1ICWaVKwDApMuMk5RZki5zoBOtZtVvAZudjOXXfufbC-V03lja1r3Vo3eCVRJJByyoK8_FPSMBpRZJD8TznjkiKILNDzLV3p2qqqLV3faTNytWDIIAOQMqj5LyqswjaVca0tq1D_0RBvG0znvO9sqdZd1ehuoyioMVAVAlVjoGoMNPiz3Y-HvLHFt_5KkH8Cj-CW8w</recordid><startdate>201103</startdate><enddate>201103</enddate><creator>Sharon, Itai</creator><creator>Bercovici, Sivan</creator><creator>Pinter, Ron Y</creator><creator>Shlomi, Tomer</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201103</creationdate><title>Pathway-based functional analysis of metagenomes</title><author>Sharon, Itai ; Bercovici, Sivan ; Pinter, Ron Y ; Shlomi, Tomer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-a8602a8bfa8c3f1269c1c53458357c0a874d290d543cb31587533a40174d2e9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Abundance</topic><topic>Artificial Intelligence</topic><topic>Bacteria - genetics</topic><topic>Biology</topic><topic>Chromosome mapping</topic><topic>Computation</topic><topic>Computational biology</topic><topic>Computer Simulation</topic><topic>Functional analysis</topic><topic>Genes</topic><topic>Genome, Bacterial</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Metagenome</topic><topic>Metagenomics - methods</topic><topic>Methods</topic><topic>Microorganisms</topic><topic>Models, Genetic</topic><topic>Pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharon, Itai</creatorcontrib><creatorcontrib>Bercovici, Sivan</creatorcontrib><creatorcontrib>Pinter, Ron Y</creatorcontrib><creatorcontrib>Shlomi, Tomer</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharon, Itai</au><au>Bercovici, Sivan</au><au>Pinter, Ron Y</au><au>Shlomi, Tomer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathway-based functional analysis of metagenomes</atitle><jtitle>Journal of computational biology</jtitle><addtitle>J Comput Biol</addtitle><date>2011-03</date><risdate>2011</risdate><volume>18</volume><issue>3</issue><spage>495</spage><epage>505</epage><pages>495-505</pages><issn>1066-5277</issn><eissn>1557-8666</eissn><abstract>Metagenomic data enables the study of microbes and viruses through their DNA as retrieved directly from the environment in which they live. Functional analysis of metagenomes explores the abundance of gene families, pathways, and systems, rather than their taxonomy. Through such analysis, researchers are able to identify those functional capabilities most important to organisms in the examined environment. Recently, a statistical framework for the functional analysis of metagenomes was described that focuses on gene families. Here we describe two pathway level computational models for functional analysis that take into account important, yet unaddressed issues such as pathway size, gene length, and overlap in gene content among pathways. We test our models over carefully designed simulated data and propose novel approaches for performance evaluation. Our models significantly improve over the current approach with respect to pathway ranking and the computations of relative abundance of pathways in environments.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>21385050</pmid><doi>10.1089/cmb.2010.0260</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1066-5277 |
ispartof | Journal of computational biology, 2011-03, Vol.18 (3), p.495-505 |
issn | 1066-5277 1557-8666 |
language | eng |
recordid | cdi_proquest_miscellaneous_856407312 |
source | Mary Ann Liebert Online Subscription; MEDLINE; Alma/SFX Local Collection |
subjects | Abundance Artificial Intelligence Bacteria - genetics Biology Chromosome mapping Computation Computational biology Computer Simulation Functional analysis Genes Genome, Bacterial Machine learning Markov processes Mathematical models Metagenome Metagenomics - methods Methods Microorganisms Models, Genetic Pathways |
title | Pathway-based functional analysis of metagenomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathway-based%20functional%20analysis%20of%20metagenomes&rft.jtitle=Journal%20of%20computational%20biology&rft.au=Sharon,%20Itai&rft.date=2011-03&rft.volume=18&rft.issue=3&rft.spage=495&rft.epage=505&rft.pages=495-505&rft.issn=1066-5277&rft.eissn=1557-8666&rft_id=info:doi/10.1089/cmb.2010.0260&rft_dat=%3Cgale_proqu%3EA252090088%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1323815069&rft_id=info:pmid/21385050&rft_galeid=A252090088&rfr_iscdi=true |