Dynamic analysis of gear-rotor system with viscoelastic supports under residual shaft bow effect

This paper investigates the dynamic behaviors of a gear-rotor system with viscoelastic supports under effects of the gear eccentricity, the transmission error of gear mesh and the residual shaft bow. The investigated dynamic characteristics include system natural frequencies and steady-state respons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanism and machine theory 2011-03, Vol.46 (3), p.264-275
Hauptverfasser: Kang, C.H., Hsu, W.C., Lee, E.K., Shiau, T.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 3
container_start_page 264
container_title Mechanism and machine theory
container_volume 46
creator Kang, C.H.
Hsu, W.C.
Lee, E.K.
Shiau, T.N.
description This paper investigates the dynamic behaviors of a gear-rotor system with viscoelastic supports under effects of the gear eccentricity, the transmission error of gear mesh and the residual shaft bow. The investigated dynamic characteristics include system natural frequencies and steady-state response. The finite element method is used to model the system and Lagrangian approach is applied to derive the system equations of motion. The results show that the mass, the stiffness and the loss factor of the viscoelastic support will significantly affect system critical speeds and steady-state response. It needs larger loss factor and more rigid stiffness of the viscoelastic supports to suppress the systematic amplitude of resonance. As the results shown, the magnitude and phase angle of the residual bow have tremendous influence on first critical speed when the geared system mounted on stiff viscoelastic supports. The transmission error of the gear mesh is assumed to be sinusoidal with tooth passing frequency and it will induce multiple low resonant frequencies in the system response. It is observed that the excited critical speed equals to the original critical speed divided by gear tooth number.
doi_str_mv 10.1016/j.mechmachtheory.2010.11.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855718223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094114X10002089</els_id><sourcerecordid>1677986326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-a58747cf9f643f8f2632e0a8e02a2a91739d00bec862c56312f322c8615c45293</originalsourceid><addsrcrecordid>eNqNkU-LFDEQxYMoOK5-hxwUvfSYSvpPGrzIrqvCghcFbzGbrtgZujtjKr1Lf3szzCJ4EU9FUb-qV7zH2EsQexDQvj3sZ3TjbN2YR4xp20txGsFeADxiO9CdqlTf94_ZToi-rgDq70_ZM6KDEKJrarVjP662xc7BcbvYaaNAPHr-E22qUswxcdoo48zvQx75XSAXcbKUC0_r8RhTJr4uAyaekMKw2onTaH3mt_Geo_fo8nP2xNuJ8MVDvWDfrj98vfxU3Xz5-Pny_U3latnkyja6qzvne9_WymsvWyVRWI1CWml76FQ_CHGLTrfSNa0C6ZWUpYPG1Y3s1QV7fb57TPHXipTNXN7FabILxpWMbpoOtJSqkG_-SULbdb0u-m1B351RlyJRQm-OKcw2bQaEOUVgDubvCMwpAgNgSgRl_dWDkiVnJ5_s4gL9uSGVhlaDKNz1mcNi0F3AZMgFXBwOIRULzRDD_wn-BqcTpfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677986326</pqid></control><display><type>article</type><title>Dynamic analysis of gear-rotor system with viscoelastic supports under residual shaft bow effect</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kang, C.H. ; Hsu, W.C. ; Lee, E.K. ; Shiau, T.N.</creator><creatorcontrib>Kang, C.H. ; Hsu, W.C. ; Lee, E.K. ; Shiau, T.N.</creatorcontrib><description>This paper investigates the dynamic behaviors of a gear-rotor system with viscoelastic supports under effects of the gear eccentricity, the transmission error of gear mesh and the residual shaft bow. The investigated dynamic characteristics include system natural frequencies and steady-state response. The finite element method is used to model the system and Lagrangian approach is applied to derive the system equations of motion. The results show that the mass, the stiffness and the loss factor of the viscoelastic support will significantly affect system critical speeds and steady-state response. It needs larger loss factor and more rigid stiffness of the viscoelastic supports to suppress the systematic amplitude of resonance. As the results shown, the magnitude and phase angle of the residual bow have tremendous influence on first critical speed when the geared system mounted on stiff viscoelastic supports. The transmission error of the gear mesh is assumed to be sinusoidal with tooth passing frequency and it will induce multiple low resonant frequencies in the system response. It is observed that the excited critical speed equals to the original critical speed divided by gear tooth number.</description><identifier>ISSN: 0094-114X</identifier><identifier>EISSN: 1873-3999</identifier><identifier>DOI: 10.1016/j.mechmachtheory.2010.11.011</identifier><identifier>CODEN: MHMTAS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Drives ; Dynamic tests ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Finite element method ; Fundamental areas of phenomenology (including applications) ; Gear mesh ; Gears ; Loss factor ; Mathematical models ; Mechanical engineering. Machine design ; Phase angle ; Physics ; Residual shaft bow ; Shafts, couplings, clutches, brakes ; Solid mechanics ; Stiffness ; Structural and continuum mechanics ; Transmission error ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Viscoelastic supports ; Viscoelasticity</subject><ispartof>Mechanism and machine theory, 2011-03, Vol.46 (3), p.264-275</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-a58747cf9f643f8f2632e0a8e02a2a91739d00bec862c56312f322c8615c45293</citedby><cites>FETCH-LOGICAL-c425t-a58747cf9f643f8f2632e0a8e02a2a91739d00bec862c56312f322c8615c45293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mechmachtheory.2010.11.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23816810$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, C.H.</creatorcontrib><creatorcontrib>Hsu, W.C.</creatorcontrib><creatorcontrib>Lee, E.K.</creatorcontrib><creatorcontrib>Shiau, T.N.</creatorcontrib><title>Dynamic analysis of gear-rotor system with viscoelastic supports under residual shaft bow effect</title><title>Mechanism and machine theory</title><description>This paper investigates the dynamic behaviors of a gear-rotor system with viscoelastic supports under effects of the gear eccentricity, the transmission error of gear mesh and the residual shaft bow. The investigated dynamic characteristics include system natural frequencies and steady-state response. The finite element method is used to model the system and Lagrangian approach is applied to derive the system equations of motion. The results show that the mass, the stiffness and the loss factor of the viscoelastic support will significantly affect system critical speeds and steady-state response. It needs larger loss factor and more rigid stiffness of the viscoelastic supports to suppress the systematic amplitude of resonance. As the results shown, the magnitude and phase angle of the residual bow have tremendous influence on first critical speed when the geared system mounted on stiff viscoelastic supports. The transmission error of the gear mesh is assumed to be sinusoidal with tooth passing frequency and it will induce multiple low resonant frequencies in the system response. It is observed that the excited critical speed equals to the original critical speed divided by gear tooth number.</description><subject>Applied sciences</subject><subject>Drives</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gear mesh</subject><subject>Gears</subject><subject>Loss factor</subject><subject>Mathematical models</subject><subject>Mechanical engineering. Machine design</subject><subject>Phase angle</subject><subject>Physics</subject><subject>Residual shaft bow</subject><subject>Shafts, couplings, clutches, brakes</subject><subject>Solid mechanics</subject><subject>Stiffness</subject><subject>Structural and continuum mechanics</subject><subject>Transmission error</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Viscoelastic supports</subject><subject>Viscoelasticity</subject><issn>0094-114X</issn><issn>1873-3999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU-LFDEQxYMoOK5-hxwUvfSYSvpPGrzIrqvCghcFbzGbrtgZujtjKr1Lf3szzCJ4EU9FUb-qV7zH2EsQexDQvj3sZ3TjbN2YR4xp20txGsFeADxiO9CdqlTf94_ZToi-rgDq70_ZM6KDEKJrarVjP662xc7BcbvYaaNAPHr-E22qUswxcdoo48zvQx75XSAXcbKUC0_r8RhTJr4uAyaekMKw2onTaH3mt_Geo_fo8nP2xNuJ8MVDvWDfrj98vfxU3Xz5-Pny_U3latnkyja6qzvne9_WymsvWyVRWI1CWml76FQ_CHGLTrfSNa0C6ZWUpYPG1Y3s1QV7fb57TPHXipTNXN7FabILxpWMbpoOtJSqkG_-SULbdb0u-m1B351RlyJRQm-OKcw2bQaEOUVgDubvCMwpAgNgSgRl_dWDkiVnJ5_s4gL9uSGVhlaDKNz1mcNi0F3AZMgFXBwOIRULzRDD_wn-BqcTpfI</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Kang, C.H.</creator><creator>Hsu, W.C.</creator><creator>Lee, E.K.</creator><creator>Shiau, T.N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Dynamic analysis of gear-rotor system with viscoelastic supports under residual shaft bow effect</title><author>Kang, C.H. ; Hsu, W.C. ; Lee, E.K. ; Shiau, T.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-a58747cf9f643f8f2632e0a8e02a2a91739d00bec862c56312f322c8615c45293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Drives</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gear mesh</topic><topic>Gears</topic><topic>Loss factor</topic><topic>Mathematical models</topic><topic>Mechanical engineering. Machine design</topic><topic>Phase angle</topic><topic>Physics</topic><topic>Residual shaft bow</topic><topic>Shafts, couplings, clutches, brakes</topic><topic>Solid mechanics</topic><topic>Stiffness</topic><topic>Structural and continuum mechanics</topic><topic>Transmission error</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Viscoelastic supports</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, C.H.</creatorcontrib><creatorcontrib>Hsu, W.C.</creatorcontrib><creatorcontrib>Lee, E.K.</creatorcontrib><creatorcontrib>Shiau, T.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanism and machine theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, C.H.</au><au>Hsu, W.C.</au><au>Lee, E.K.</au><au>Shiau, T.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic analysis of gear-rotor system with viscoelastic supports under residual shaft bow effect</atitle><jtitle>Mechanism and machine theory</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>46</volume><issue>3</issue><spage>264</spage><epage>275</epage><pages>264-275</pages><issn>0094-114X</issn><eissn>1873-3999</eissn><coden>MHMTAS</coden><abstract>This paper investigates the dynamic behaviors of a gear-rotor system with viscoelastic supports under effects of the gear eccentricity, the transmission error of gear mesh and the residual shaft bow. The investigated dynamic characteristics include system natural frequencies and steady-state response. The finite element method is used to model the system and Lagrangian approach is applied to derive the system equations of motion. The results show that the mass, the stiffness and the loss factor of the viscoelastic support will significantly affect system critical speeds and steady-state response. It needs larger loss factor and more rigid stiffness of the viscoelastic supports to suppress the systematic amplitude of resonance. As the results shown, the magnitude and phase angle of the residual bow have tremendous influence on first critical speed when the geared system mounted on stiff viscoelastic supports. The transmission error of the gear mesh is assumed to be sinusoidal with tooth passing frequency and it will induce multiple low resonant frequencies in the system response. It is observed that the excited critical speed equals to the original critical speed divided by gear tooth number.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.mechmachtheory.2010.11.011</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-114X
ispartof Mechanism and machine theory, 2011-03, Vol.46 (3), p.264-275
issn 0094-114X
1873-3999
language eng
recordid cdi_proquest_miscellaneous_855718223
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Drives
Dynamic tests
Dynamical systems
Dynamics
Exact sciences and technology
Finite element method
Fundamental areas of phenomenology (including applications)
Gear mesh
Gears
Loss factor
Mathematical models
Mechanical engineering. Machine design
Phase angle
Physics
Residual shaft bow
Shafts, couplings, clutches, brakes
Solid mechanics
Stiffness
Structural and continuum mechanics
Transmission error
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Viscoelastic supports
Viscoelasticity
title Dynamic analysis of gear-rotor system with viscoelastic supports under residual shaft bow effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20analysis%20of%20gear-rotor%20system%20with%20viscoelastic%20supports%20under%20residual%20shaft%20bow%20effect&rft.jtitle=Mechanism%20and%20machine%20theory&rft.au=Kang,%20C.H.&rft.date=2011-03-01&rft.volume=46&rft.issue=3&rft.spage=264&rft.epage=275&rft.pages=264-275&rft.issn=0094-114X&rft.eissn=1873-3999&rft.coden=MHMTAS&rft_id=info:doi/10.1016/j.mechmachtheory.2010.11.011&rft_dat=%3Cproquest_cross%3E1677986326%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677986326&rft_id=info:pmid/&rft_els_id=S0094114X10002089&rfr_iscdi=true