Dehydrogenation of propane over Pt/KL catalyst: Investigating the role of L-zeolite structure on catalyst performance using isotope labeling

[Display omitted] ▶ An NKIE exists during propane (H and D labeled) dehydrogenation over Pt/KL. ▶ Catalyst deactivation occurred from carbon deposition due to bimolecular reactions. ▶ The unique structure of Pt/KL did not enhance performance with C 3 as with C 6. Dehydrogenation of propane using an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. A, General General, 2010-12, Vol.390 (1), p.264-270
Hauptverfasser: Azzam, Khalid G., Jacobs, Gary, Shafer, Wilson D., Davis, Burtron H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue 1
container_start_page 264
container_title Applied catalysis. A, General
container_volume 390
creator Azzam, Khalid G.
Jacobs, Gary
Shafer, Wilson D.
Davis, Burtron H.
description [Display omitted] ▶ An NKIE exists during propane (H and D labeled) dehydrogenation over Pt/KL. ▶ Catalyst deactivation occurred from carbon deposition due to bimolecular reactions. ▶ The unique structure of Pt/KL did not enhance performance with C 3 as with C 6. Dehydrogenation of propane using an equimolar mixture of propane- d 0 and propane- d 8 was investigated over 1%Pt/KL and 1%Pt/SiO 2 at atmospheric pressure and different reaction temperatures. A normal kinetic isotope effect exists ( k H/ k D = 1.4–1.5) when the reaction is conducted on Pt/KL at different temperatures (400, 500, and 600 °C), suggesting that C–H bond activation is involved in the kinetically relevant steps. Furtheremore, there is hardly any H–D exchange in the recovered propane during dehydrogenation at temperatures above 400 °C, suggesting that adsorption and subsequent dehydrogenation of propane are essentially irreversible and that C–H bond activation is the rate determining step. Unlike the case of hexane aromatization, the unique structure of L-zeolite does not help in controlling the entry of propane molecules into the lobes of the L-zeolite containing the active sites; hence, bimolecular reactions do occur, leading to coke formation and catalyst deactivation.
doi_str_mv 10.1016/j.apcata.2010.10.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855718119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926860X10007283</els_id><sourcerecordid>855718119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-cd401c6a1a0bf741230260116d6139f6991570de2fb4828ed9cea77d5b8428333</originalsourceid><addsrcrecordid>eNp9kM1u1DAUhS0EEkPhDVh4g1hlem0njsMCCZW_ipHaRZHYWR7nZuqRJw62M9LwDH1oHKbqktWVjs53rs4h5C2DNQMmL_drM1mTzZrDP2kNnD8jK6ZaUQnVNs_JCjouKyXh10vyKqU9APC6a1bk4TPen_oYdjia7MJIw0CnGCYzIg1HjPQ2X_7Y0CXdn1L-QK_HI6bsdsU97mi-RxqDxwXbVH8weJeRphxnm-dY5PEJpRPGIcSDGS3SOS20SyGHCak3W_RFeE1eDMYnfPN4L8jPr1_urr5Xm5tv11efNpUVUuXK9jUwKw0zsB3amnEBXAJjspdMdIPsOta00CMftrXiCvvOomnbvtmqmishxAV5f84tTX_PpY4-uGTR-9I6zEmrpmmZYqwrzvrstDGkFHHQU3QHE0-agV6213t93l4v2y9q2b5g7x4fmGSNH2Ip7dITy4UUICUU38ezD0vbo8Ook3VYBupdRJt1H9z_H_0FYWSeNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855718119</pqid></control><display><type>article</type><title>Dehydrogenation of propane over Pt/KL catalyst: Investigating the role of L-zeolite structure on catalyst performance using isotope labeling</title><source>Elsevier ScienceDirect Journals</source><creator>Azzam, Khalid G. ; Jacobs, Gary ; Shafer, Wilson D. ; Davis, Burtron H.</creator><creatorcontrib>Azzam, Khalid G. ; Jacobs, Gary ; Shafer, Wilson D. ; Davis, Burtron H.</creatorcontrib><description>[Display omitted] ▶ An NKIE exists during propane (H and D labeled) dehydrogenation over Pt/KL. ▶ Catalyst deactivation occurred from carbon deposition due to bimolecular reactions. ▶ The unique structure of Pt/KL did not enhance performance with C 3 as with C 6. Dehydrogenation of propane using an equimolar mixture of propane- d 0 and propane- d 8 was investigated over 1%Pt/KL and 1%Pt/SiO 2 at atmospheric pressure and different reaction temperatures. A normal kinetic isotope effect exists ( k H/ k D = 1.4–1.5) when the reaction is conducted on Pt/KL at different temperatures (400, 500, and 600 °C), suggesting that C–H bond activation is involved in the kinetically relevant steps. Furtheremore, there is hardly any H–D exchange in the recovered propane during dehydrogenation at temperatures above 400 °C, suggesting that adsorption and subsequent dehydrogenation of propane are essentially irreversible and that C–H bond activation is the rate determining step. Unlike the case of hexane aromatization, the unique structure of L-zeolite does not help in controlling the entry of propane molecules into the lobes of the L-zeolite containing the active sites; hence, bimolecular reactions do occur, leading to coke formation and catalyst deactivation.</description><identifier>ISSN: 0926-860X</identifier><identifier>EISSN: 1873-3875</identifier><identifier>DOI: 10.1016/j.apcata.2010.10.022</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Activation ; Active control ; Atmospheric pressure ; Bonding ; C 3D 8 ; C 3H 8 ; Catalysis ; Catalysts ; Chemistry ; Dehydrogenation ; Diffusion ; Exact sciences and technology ; General and physical chemistry ; H–D exchange ; Ion-exchange ; Isotope effect ; L-zeolite ; Platinum ; Propane ; Pt/KL ; Surface physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Zeolites: preparations and properties</subject><ispartof>Applied catalysis. A, General, 2010-12, Vol.390 (1), p.264-270</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-cd401c6a1a0bf741230260116d6139f6991570de2fb4828ed9cea77d5b8428333</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926860X10007283$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23630660$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Azzam, Khalid G.</creatorcontrib><creatorcontrib>Jacobs, Gary</creatorcontrib><creatorcontrib>Shafer, Wilson D.</creatorcontrib><creatorcontrib>Davis, Burtron H.</creatorcontrib><title>Dehydrogenation of propane over Pt/KL catalyst: Investigating the role of L-zeolite structure on catalyst performance using isotope labeling</title><title>Applied catalysis. A, General</title><description>[Display omitted] ▶ An NKIE exists during propane (H and D labeled) dehydrogenation over Pt/KL. ▶ Catalyst deactivation occurred from carbon deposition due to bimolecular reactions. ▶ The unique structure of Pt/KL did not enhance performance with C 3 as with C 6. Dehydrogenation of propane using an equimolar mixture of propane- d 0 and propane- d 8 was investigated over 1%Pt/KL and 1%Pt/SiO 2 at atmospheric pressure and different reaction temperatures. A normal kinetic isotope effect exists ( k H/ k D = 1.4–1.5) when the reaction is conducted on Pt/KL at different temperatures (400, 500, and 600 °C), suggesting that C–H bond activation is involved in the kinetically relevant steps. Furtheremore, there is hardly any H–D exchange in the recovered propane during dehydrogenation at temperatures above 400 °C, suggesting that adsorption and subsequent dehydrogenation of propane are essentially irreversible and that C–H bond activation is the rate determining step. Unlike the case of hexane aromatization, the unique structure of L-zeolite does not help in controlling the entry of propane molecules into the lobes of the L-zeolite containing the active sites; hence, bimolecular reactions do occur, leading to coke formation and catalyst deactivation.</description><subject>Activation</subject><subject>Active control</subject><subject>Atmospheric pressure</subject><subject>Bonding</subject><subject>C 3D 8</subject><subject>C 3H 8</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Dehydrogenation</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>H–D exchange</subject><subject>Ion-exchange</subject><subject>Isotope effect</subject><subject>L-zeolite</subject><subject>Platinum</subject><subject>Propane</subject><subject>Pt/KL</subject><subject>Surface physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Zeolites: preparations and properties</subject><issn>0926-860X</issn><issn>1873-3875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u1DAUhS0EEkPhDVh4g1hlem0njsMCCZW_ipHaRZHYWR7nZuqRJw62M9LwDH1oHKbqktWVjs53rs4h5C2DNQMmL_drM1mTzZrDP2kNnD8jK6ZaUQnVNs_JCjouKyXh10vyKqU9APC6a1bk4TPen_oYdjia7MJIw0CnGCYzIg1HjPQ2X_7Y0CXdn1L-QK_HI6bsdsU97mi-RxqDxwXbVH8weJeRphxnm-dY5PEJpRPGIcSDGS3SOS20SyGHCak3W_RFeE1eDMYnfPN4L8jPr1_urr5Xm5tv11efNpUVUuXK9jUwKw0zsB3amnEBXAJjspdMdIPsOta00CMftrXiCvvOomnbvtmqmishxAV5f84tTX_PpY4-uGTR-9I6zEmrpmmZYqwrzvrstDGkFHHQU3QHE0-agV6213t93l4v2y9q2b5g7x4fmGSNH2Ip7dITy4UUICUU38ezD0vbo8Ook3VYBupdRJt1H9z_H_0FYWSeNw</recordid><startdate>20101220</startdate><enddate>20101220</enddate><creator>Azzam, Khalid G.</creator><creator>Jacobs, Gary</creator><creator>Shafer, Wilson D.</creator><creator>Davis, Burtron H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101220</creationdate><title>Dehydrogenation of propane over Pt/KL catalyst: Investigating the role of L-zeolite structure on catalyst performance using isotope labeling</title><author>Azzam, Khalid G. ; Jacobs, Gary ; Shafer, Wilson D. ; Davis, Burtron H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-cd401c6a1a0bf741230260116d6139f6991570de2fb4828ed9cea77d5b8428333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Activation</topic><topic>Active control</topic><topic>Atmospheric pressure</topic><topic>Bonding</topic><topic>C 3D 8</topic><topic>C 3H 8</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Dehydrogenation</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>H–D exchange</topic><topic>Ion-exchange</topic><topic>Isotope effect</topic><topic>L-zeolite</topic><topic>Platinum</topic><topic>Propane</topic><topic>Pt/KL</topic><topic>Surface physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Zeolites: preparations and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azzam, Khalid G.</creatorcontrib><creatorcontrib>Jacobs, Gary</creatorcontrib><creatorcontrib>Shafer, Wilson D.</creatorcontrib><creatorcontrib>Davis, Burtron H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied catalysis. A, General</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azzam, Khalid G.</au><au>Jacobs, Gary</au><au>Shafer, Wilson D.</au><au>Davis, Burtron H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dehydrogenation of propane over Pt/KL catalyst: Investigating the role of L-zeolite structure on catalyst performance using isotope labeling</atitle><jtitle>Applied catalysis. A, General</jtitle><date>2010-12-20</date><risdate>2010</risdate><volume>390</volume><issue>1</issue><spage>264</spage><epage>270</epage><pages>264-270</pages><issn>0926-860X</issn><eissn>1873-3875</eissn><abstract>[Display omitted] ▶ An NKIE exists during propane (H and D labeled) dehydrogenation over Pt/KL. ▶ Catalyst deactivation occurred from carbon deposition due to bimolecular reactions. ▶ The unique structure of Pt/KL did not enhance performance with C 3 as with C 6. Dehydrogenation of propane using an equimolar mixture of propane- d 0 and propane- d 8 was investigated over 1%Pt/KL and 1%Pt/SiO 2 at atmospheric pressure and different reaction temperatures. A normal kinetic isotope effect exists ( k H/ k D = 1.4–1.5) when the reaction is conducted on Pt/KL at different temperatures (400, 500, and 600 °C), suggesting that C–H bond activation is involved in the kinetically relevant steps. Furtheremore, there is hardly any H–D exchange in the recovered propane during dehydrogenation at temperatures above 400 °C, suggesting that adsorption and subsequent dehydrogenation of propane are essentially irreversible and that C–H bond activation is the rate determining step. Unlike the case of hexane aromatization, the unique structure of L-zeolite does not help in controlling the entry of propane molecules into the lobes of the L-zeolite containing the active sites; hence, bimolecular reactions do occur, leading to coke formation and catalyst deactivation.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcata.2010.10.022</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0926-860X
ispartof Applied catalysis. A, General, 2010-12, Vol.390 (1), p.264-270
issn 0926-860X
1873-3875
language eng
recordid cdi_proquest_miscellaneous_855718119
source Elsevier ScienceDirect Journals
subjects Activation
Active control
Atmospheric pressure
Bonding
C 3D 8
C 3H 8
Catalysis
Catalysts
Chemistry
Dehydrogenation
Diffusion
Exact sciences and technology
General and physical chemistry
H–D exchange
Ion-exchange
Isotope effect
L-zeolite
Platinum
Propane
Pt/KL
Surface physical chemistry
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Zeolites: preparations and properties
title Dehydrogenation of propane over Pt/KL catalyst: Investigating the role of L-zeolite structure on catalyst performance using isotope labeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dehydrogenation%20of%20propane%20over%20Pt/KL%20catalyst:%20Investigating%20the%20role%20of%20L-zeolite%20structure%20on%20catalyst%20performance%20using%20isotope%20labeling&rft.jtitle=Applied%20catalysis.%20A,%20General&rft.au=Azzam,%20Khalid%20G.&rft.date=2010-12-20&rft.volume=390&rft.issue=1&rft.spage=264&rft.epage=270&rft.pages=264-270&rft.issn=0926-860X&rft.eissn=1873-3875&rft_id=info:doi/10.1016/j.apcata.2010.10.022&rft_dat=%3Cproquest_cross%3E855718119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855718119&rft_id=info:pmid/&rft_els_id=S0926860X10007283&rfr_iscdi=true