Behavior of the solution of nonlinear hyperbolic equation in a domain with non-smooth boundary
In this paper the estimations of the solution and its derivative with respect to t of the initial boundary value problem for the second order hyperbolic type equation in a domain with non-smooth boundary are obtained. The question of smoothness of the generalized solution of the investigated problem...
Gespeichert in:
Veröffentlicht in: | Applied mathematics letters 2011-03, Vol.24 (3), p.283-287 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 287 |
---|---|
container_issue | 3 |
container_start_page | 283 |
container_title | Applied mathematics letters |
container_volume | 24 |
creator | Hajiev, T.S. Rasulov, R.A. |
description | In this paper the estimations of the solution and its derivative with respect to
t
of the initial boundary value problem for the second order hyperbolic type equation in a domain with non-smooth boundary are obtained. The question of smoothness of the generalized solution of the investigated problem is also studied. |
doi_str_mv | 10.1016/j.aml.2010.10.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855717493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893965910003526</els_id><sourcerecordid>855717493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-a3da5d14dffd8678da6c8303d8cc9ddc3092d1f5b9791e3b7dae456dfee909503</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9iyIKYUO44TW0xQ8SVVYoEVy7UvqqvEbu2kqP8ep0WMTPfe6bmvF6FrgmcEk-puPVNdOyvwIZ9hzE7QhPCa5qxkxSmaYC5oLiomztFFjGuMMRWUT9DXI6zUzvqQ-SbrV5BF3w699W7MnXetdaBCttpvICx9a3UG20EdAOsylRnfqSS-bb8a8Tx23ie59IMzKuwv0Vmj2ghXv3GKPp-fPuav-eL95W3-sMh1iYs-V9QoZkhpmsbwquZGVZpTTA3XWhijKRaFIQ1biloQoMvaKChZZRoAgQXDdIpuj3M3wW8HiL3sbNTQtsqBH6LkjNWkLgVNJDmSOvgYAzRyE2yXTpUEy9FKuZbJSjlaOZaSlann5ne6ilq1TVBO2_jXWFBeiIrUibs_cpBe3VkIMmoLToOxAXQvjbf_bPkB_GSK6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855717493</pqid></control><display><type>article</type><title>Behavior of the solution of nonlinear hyperbolic equation in a domain with non-smooth boundary</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hajiev, T.S. ; Rasulov, R.A.</creator><creatorcontrib>Hajiev, T.S. ; Rasulov, R.A.</creatorcontrib><description>In this paper the estimations of the solution and its derivative with respect to
t
of the initial boundary value problem for the second order hyperbolic type equation in a domain with non-smooth boundary are obtained. The question of smoothness of the generalized solution of the investigated problem is also studied.</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2010.10.005</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Behaviour ; Boundaries ; Boundary value problems ; Derivatives ; Equation ; Exact sciences and technology ; Hyperbolic ; Mathematical analysis ; Mathematics ; Non-smooth domain ; Nonlinear ; Nonlinearity ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use ; Smoothness ; Solution</subject><ispartof>Applied mathematics letters, 2011-03, Vol.24 (3), p.283-287</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-a3da5d14dffd8678da6c8303d8cc9ddc3092d1f5b9791e3b7dae456dfee909503</citedby><cites>FETCH-LOGICAL-c402t-a3da5d14dffd8678da6c8303d8cc9ddc3092d1f5b9791e3b7dae456dfee909503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aml.2010.10.005$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23829617$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hajiev, T.S.</creatorcontrib><creatorcontrib>Rasulov, R.A.</creatorcontrib><title>Behavior of the solution of nonlinear hyperbolic equation in a domain with non-smooth boundary</title><title>Applied mathematics letters</title><description>In this paper the estimations of the solution and its derivative with respect to
t
of the initial boundary value problem for the second order hyperbolic type equation in a domain with non-smooth boundary are obtained. The question of smoothness of the generalized solution of the investigated problem is also studied.</description><subject>Behaviour</subject><subject>Boundaries</subject><subject>Boundary value problems</subject><subject>Derivatives</subject><subject>Equation</subject><subject>Exact sciences and technology</subject><subject>Hyperbolic</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Non-smooth domain</subject><subject>Nonlinear</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>Smoothness</subject><subject>Solution</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9iyIKYUO44TW0xQ8SVVYoEVy7UvqqvEbu2kqP8ep0WMTPfe6bmvF6FrgmcEk-puPVNdOyvwIZ9hzE7QhPCa5qxkxSmaYC5oLiomztFFjGuMMRWUT9DXI6zUzvqQ-SbrV5BF3w699W7MnXetdaBCttpvICx9a3UG20EdAOsylRnfqSS-bb8a8Tx23ie59IMzKuwv0Vmj2ghXv3GKPp-fPuav-eL95W3-sMh1iYs-V9QoZkhpmsbwquZGVZpTTA3XWhijKRaFIQ1biloQoMvaKChZZRoAgQXDdIpuj3M3wW8HiL3sbNTQtsqBH6LkjNWkLgVNJDmSOvgYAzRyE2yXTpUEy9FKuZbJSjlaOZaSlann5ne6ilq1TVBO2_jXWFBeiIrUibs_cpBe3VkIMmoLToOxAXQvjbf_bPkB_GSK6g</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Hajiev, T.S.</creator><creator>Rasulov, R.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Behavior of the solution of nonlinear hyperbolic equation in a domain with non-smooth boundary</title><author>Hajiev, T.S. ; Rasulov, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-a3da5d14dffd8678da6c8303d8cc9ddc3092d1f5b9791e3b7dae456dfee909503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Behaviour</topic><topic>Boundaries</topic><topic>Boundary value problems</topic><topic>Derivatives</topic><topic>Equation</topic><topic>Exact sciences and technology</topic><topic>Hyperbolic</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Non-smooth domain</topic><topic>Nonlinear</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>Smoothness</topic><topic>Solution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hajiev, T.S.</creatorcontrib><creatorcontrib>Rasulov, R.A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajiev, T.S.</au><au>Rasulov, R.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavior of the solution of nonlinear hyperbolic equation in a domain with non-smooth boundary</atitle><jtitle>Applied mathematics letters</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>24</volume><issue>3</issue><spage>283</spage><epage>287</epage><pages>283-287</pages><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>In this paper the estimations of the solution and its derivative with respect to
t
of the initial boundary value problem for the second order hyperbolic type equation in a domain with non-smooth boundary are obtained. The question of smoothness of the generalized solution of the investigated problem is also studied.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2010.10.005</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-9659 |
ispartof | Applied mathematics letters, 2011-03, Vol.24 (3), p.283-287 |
issn | 0893-9659 1873-5452 |
language | eng |
recordid | cdi_proquest_miscellaneous_855717493 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Behaviour Boundaries Boundary value problems Derivatives Equation Exact sciences and technology Hyperbolic Mathematical analysis Mathematics Non-smooth domain Nonlinear Nonlinearity Numerical analysis Numerical analysis. Scientific computation Partial differential equations Partial differential equations, boundary value problems Partial differential equations, initial value problems and time-dependant initial-boundary value problems Sciences and techniques of general use Smoothness Solution |
title | Behavior of the solution of nonlinear hyperbolic equation in a domain with non-smooth boundary |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A06%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavior%20of%20the%20solution%20of%20nonlinear%20hyperbolic%20equation%20in%20a%20domain%20with%20non-smooth%20boundary&rft.jtitle=Applied%20mathematics%20letters&rft.au=Hajiev,%20T.S.&rft.date=2011-03-01&rft.volume=24&rft.issue=3&rft.spage=283&rft.epage=287&rft.pages=283-287&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2010.10.005&rft_dat=%3Cproquest_cross%3E855717493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855717493&rft_id=info:pmid/&rft_els_id=S0893965910003526&rfr_iscdi=true |