Global bifurcations of critical orbits of G -invariant strongly indefinite functionals

Let H be a separable Hilbert space which is an orthogonal representation of a compact Lie group G and let Φ : H → R be a G -invariant strongly indefinite functional of the class  C 1 . To study critical orbits of Φ we have defined the degree for G -invariant strongly indefinite functionals, which is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2011-03, Vol.74 (5), p.1823-1834
Hauptverfasser: Gołȩbiewska, Anna, Rybicki, Sławomir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1834
container_issue 5
container_start_page 1823
container_title Nonlinear analysis
container_volume 74
creator Gołȩbiewska, Anna
Rybicki, Sławomir
description Let H be a separable Hilbert space which is an orthogonal representation of a compact Lie group G and let Φ : H → R be a G -invariant strongly indefinite functional of the class  C 1 . To study critical orbits of Φ we have defined the degree for G -invariant strongly indefinite functionals, which is an element of the Euler ring U ( G ) . Using this degree we have formulated the Rabinowitz alternative for G -invariant strongly indefinite functionals. The abstract results are applied to the study of global bifurcations of weak solutions of non-cooperative systems of elliptic differential equations.
doi_str_mv 10.1016/j.na.2010.10.055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855713570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X10007716</els_id><sourcerecordid>855713570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-13470ce1738caec8448e9a1d98f81ad7682ea7ce09d134edf2d10ba3d64c79e83</originalsourceid><addsrcrecordid>eNp1kD1PAzEMhiMEEqWwM96CmK4kl8tdyoYQFKRKLIDYojRxkKtrUpIUiX9P-iE2Jsv249f2S8gloxNGWXeznHg9aegunVAhjsiIyZ7XomHimIwo75patN3HKTlLaUkpZT3vRuR9NoSFHqoFuk00OmPwqQquMhEzmtIIcYF5V5pVNfpvHVH7XKUcg_8cfir0Fhx6zFC5jTdbAT2kc3LiSoCLQxyTt8eH1_unev4ye76_m9eGiy7XjLc9NVBOkUaDkW0rYaqZnUonmbZ9JxvQvQE6tQUF6xrL6EJz27Wmn4LkY3K9113H8LWBlNUKk4Fh0B7CJikpRM-46Gkh6Z40MaQUwal1xJWOP4pRtXVQLZXXauvgtlIcLCNXB3GdihUuam8w_c01XAredG3hbvcclE-_EaJKBsEbsBjBZGUD_r_kF9EDhks</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855713570</pqid></control><display><type>article</type><title>Global bifurcations of critical orbits of G -invariant strongly indefinite functionals</title><source>Elsevier ScienceDirect Journals</source><creator>Gołȩbiewska, Anna ; Rybicki, Sławomir</creator><creatorcontrib>Gołȩbiewska, Anna ; Rybicki, Sławomir</creatorcontrib><description>Let H be a separable Hilbert space which is an orthogonal representation of a compact Lie group G and let Φ : H → R be a G -invariant strongly indefinite functional of the class  C 1 . To study critical orbits of Φ we have defined the degree for G -invariant strongly indefinite functionals, which is an element of the Euler ring U ( G ) . Using this degree we have formulated the Rabinowitz alternative for G -invariant strongly indefinite functionals. The abstract results are applied to the study of global bifurcations of weak solutions of non-cooperative systems of elliptic differential equations.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2010.10.055</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Bifurcations ; Elliptic differential equations ; Exact sciences and technology ; Functional analysis ; Functionals ; Geometry ; Global bifurcation of critical orbits ; Group theory ; Hilbert space ; Lie groups ; Mathematical analysis ; Mathematics ; Non-cooperative elliptic systems ; Nonlinear algebraic and transcendental equations ; Nonlinearity ; Numerical analysis ; Numerical analysis. Scientific computation ; Orbits ; Representations ; Sciences and techniques of general use ; Strongly indefinite functionals ; Topological groups, lie groups</subject><ispartof>Nonlinear analysis, 2011-03, Vol.74 (5), p.1823-1834</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-13470ce1738caec8448e9a1d98f81ad7682ea7ce09d134edf2d10ba3d64c79e83</citedby><cites>FETCH-LOGICAL-c356t-13470ce1738caec8448e9a1d98f81ad7682ea7ce09d134edf2d10ba3d64c79e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2010.10.055$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23853264$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gołȩbiewska, Anna</creatorcontrib><creatorcontrib>Rybicki, Sławomir</creatorcontrib><title>Global bifurcations of critical orbits of G -invariant strongly indefinite functionals</title><title>Nonlinear analysis</title><description>Let H be a separable Hilbert space which is an orthogonal representation of a compact Lie group G and let Φ : H → R be a G -invariant strongly indefinite functional of the class  C 1 . To study critical orbits of Φ we have defined the degree for G -invariant strongly indefinite functionals, which is an element of the Euler ring U ( G ) . Using this degree we have formulated the Rabinowitz alternative for G -invariant strongly indefinite functionals. The abstract results are applied to the study of global bifurcations of weak solutions of non-cooperative systems of elliptic differential equations.</description><subject>Bifurcations</subject><subject>Elliptic differential equations</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>Functionals</subject><subject>Geometry</subject><subject>Global bifurcation of critical orbits</subject><subject>Group theory</subject><subject>Hilbert space</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Non-cooperative elliptic systems</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Orbits</subject><subject>Representations</subject><subject>Sciences and techniques of general use</subject><subject>Strongly indefinite functionals</subject><subject>Topological groups, lie groups</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PAzEMhiMEEqWwM96CmK4kl8tdyoYQFKRKLIDYojRxkKtrUpIUiX9P-iE2Jsv249f2S8gloxNGWXeznHg9aegunVAhjsiIyZ7XomHimIwo75patN3HKTlLaUkpZT3vRuR9NoSFHqoFuk00OmPwqQquMhEzmtIIcYF5V5pVNfpvHVH7XKUcg_8cfir0Fhx6zFC5jTdbAT2kc3LiSoCLQxyTt8eH1_unev4ye76_m9eGiy7XjLc9NVBOkUaDkW0rYaqZnUonmbZ9JxvQvQE6tQUF6xrL6EJz27Wmn4LkY3K9113H8LWBlNUKk4Fh0B7CJikpRM-46Gkh6Z40MaQUwal1xJWOP4pRtXVQLZXXauvgtlIcLCNXB3GdihUuam8w_c01XAredG3hbvcclE-_EaJKBsEbsBjBZGUD_r_kF9EDhks</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Gołȩbiewska, Anna</creator><creator>Rybicki, Sławomir</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Global bifurcations of critical orbits of G -invariant strongly indefinite functionals</title><author>Gołȩbiewska, Anna ; Rybicki, Sławomir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-13470ce1738caec8448e9a1d98f81ad7682ea7ce09d134edf2d10ba3d64c79e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bifurcations</topic><topic>Elliptic differential equations</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>Functionals</topic><topic>Geometry</topic><topic>Global bifurcation of critical orbits</topic><topic>Group theory</topic><topic>Hilbert space</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Non-cooperative elliptic systems</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Orbits</topic><topic>Representations</topic><topic>Sciences and techniques of general use</topic><topic>Strongly indefinite functionals</topic><topic>Topological groups, lie groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gołȩbiewska, Anna</creatorcontrib><creatorcontrib>Rybicki, Sławomir</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gołȩbiewska, Anna</au><au>Rybicki, Sławomir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global bifurcations of critical orbits of G -invariant strongly indefinite functionals</atitle><jtitle>Nonlinear analysis</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>74</volume><issue>5</issue><spage>1823</spage><epage>1834</epage><pages>1823-1834</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>Let H be a separable Hilbert space which is an orthogonal representation of a compact Lie group G and let Φ : H → R be a G -invariant strongly indefinite functional of the class  C 1 . To study critical orbits of Φ we have defined the degree for G -invariant strongly indefinite functionals, which is an element of the Euler ring U ( G ) . Using this degree we have formulated the Rabinowitz alternative for G -invariant strongly indefinite functionals. The abstract results are applied to the study of global bifurcations of weak solutions of non-cooperative systems of elliptic differential equations.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2010.10.055</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2011-03, Vol.74 (5), p.1823-1834
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_855713570
source Elsevier ScienceDirect Journals
subjects Bifurcations
Elliptic differential equations
Exact sciences and technology
Functional analysis
Functionals
Geometry
Global bifurcation of critical orbits
Group theory
Hilbert space
Lie groups
Mathematical analysis
Mathematics
Non-cooperative elliptic systems
Nonlinear algebraic and transcendental equations
Nonlinearity
Numerical analysis
Numerical analysis. Scientific computation
Orbits
Representations
Sciences and techniques of general use
Strongly indefinite functionals
Topological groups, lie groups
title Global bifurcations of critical orbits of G -invariant strongly indefinite functionals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20bifurcations%20of%20critical%20orbits%20of%20G%20-invariant%20strongly%20indefinite%20functionals&rft.jtitle=Nonlinear%20analysis&rft.au=Go%C5%82%C8%A9biewska,%20Anna&rft.date=2011-03-01&rft.volume=74&rft.issue=5&rft.spage=1823&rft.epage=1834&rft.pages=1823-1834&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2010.10.055&rft_dat=%3Cproquest_cross%3E855713570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855713570&rft_id=info:pmid/&rft_els_id=S0362546X10007716&rfr_iscdi=true