Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function

When two interventions are randomized to multiple sub-clusters within a whole cluster, accounting for the within sub-cluster (intra-cluster) and between sub-clusters (inter-cluster) correlations is needed to produce valid analyses of the effect of interventions. With the growing interest in copulas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2011-03, Vol.55 (3), p.1226-1235
Hauptverfasser: Shoukri, Mohamed M., Kumar, Pranesh, Colak, Dilek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1235
container_issue 3
container_start_page 1226
container_title Computational statistics & data analysis
container_volume 55
creator Shoukri, Mohamed M.
Kumar, Pranesh
Colak, Dilek
description When two interventions are randomized to multiple sub-clusters within a whole cluster, accounting for the within sub-cluster (intra-cluster) and between sub-clusters (inter-cluster) correlations is needed to produce valid analyses of the effect of interventions. With the growing interest in copulas and their applications in statistical research, we demonstrate, through applications, how copula functions may be used to account for the correlation among responses across sub-clusters. Copulas having asymmetric dependence property may prove useful for modeling the relationship between random functions especially in clinical, health and environmental sciences where response data are in general skewed. These functions can in general be used to study scale-free measures of dependence, and they can be used as a starting point for constructing families of bivariate distributions, with a view to simulations. The core contribution of this paper is to provide an alternative approach for estimating the inter-cluster correlation using copula to accurately estimate the treatment effect when the outcome variable is measured on the dichotomous scale. Two data sets are used to illustrate the proposed methodology.
doi_str_mv 10.1016/j.csda.2010.08.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855713446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947310003257</els_id><sourcerecordid>855713446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-c8fd84f86baecd47786c933d82e63e1d8fe7ea2a53800c1162369a7ee5418cea3</originalsourceid><addsrcrecordid>eNp9kM2OFCEUhStGE9vRF3DFxriqHn6qgDZuJpPRMWnjRtcE4ZbSoaEEqpOep_dWepyli8MN5Dsnl9N1bxndMsrk9WHrqrdbTvGB6i2OZ92GacV7JUb-vNsgpPrdoMTL7lWtB0opH5TedO0m2Xh-COkX8TBD8pAamUuec2khp0pCIi4utUEhxSafj-EBPGkl2Fg_kK_ZQ1zNISHR_yNdLgWiXRPIKVi8z0u0ZFqSW99edy8mtMObx3nV_fh09_32vt9_-_zl9mbfO6F5652evB4mLX9acH5QSku3E8JrDlIA83oCBZbbUWhKHWOSC7mzCmAcmHZgxVX3_pKLH_qzQG3mGKqDGG2CvFSjx1ExMQwSSX4hXcm1FpjMXMLRlrNh1KwNm4NZGzZrw4ZqgwNN-4upYHPuyQEAK5qsORlhxxGPMwqdDEdACdSMYpxLw7gYze92xLh3j9va6mycsG4X6lMsF5ppSQfkPl44wOpOAYqpLkBy4EMB14zP4X9b_wVKuq46</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855713446</pqid></control><display><type>article</type><title>Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Shoukri, Mohamed M. ; Kumar, Pranesh ; Colak, Dilek</creator><creatorcontrib>Shoukri, Mohamed M. ; Kumar, Pranesh ; Colak, Dilek</creatorcontrib><description>When two interventions are randomized to multiple sub-clusters within a whole cluster, accounting for the within sub-cluster (intra-cluster) and between sub-clusters (inter-cluster) correlations is needed to produce valid analyses of the effect of interventions. With the growing interest in copulas and their applications in statistical research, we demonstrate, through applications, how copula functions may be used to account for the correlation among responses across sub-clusters. Copulas having asymmetric dependence property may prove useful for modeling the relationship between random functions especially in clinical, health and environmental sciences where response data are in general skewed. These functions can in general be used to study scale-free measures of dependence, and they can be used as a starting point for constructing families of bivariate distributions, with a view to simulations. The core contribution of this paper is to provide an alternative approach for estimating the inter-cluster correlation using copula to accurately estimate the treatment effect when the outcome variable is measured on the dichotomous scale. Two data sets are used to illustrate the proposed methodology.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2010.08.010</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accounting ; Applications ; Asymmetry ; Beta binomial distribution ; Cluster randomization ; Cluster randomization Correlated proportion Beta binomial distribution Copula function ; Clusters ; Copula function ; Correlated proportion ; Correlation analysis ; Data processing ; Exact sciences and technology ; General topics ; Mathematical analysis ; Mathematical models ; Mathematics ; Medical sciences ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Probability and statistics ; Sciences and techniques of general use ; Statistics</subject><ispartof>Computational statistics &amp; data analysis, 2011-03, Vol.55 (3), p.1226-1235</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c382t-c8fd84f86baecd47786c933d82e63e1d8fe7ea2a53800c1162369a7ee5418cea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947310003257$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,3993,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23818604$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a55_3ay_3a2011_3ai_3a3_3ap_3a1226-1235.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Shoukri, Mohamed M.</creatorcontrib><creatorcontrib>Kumar, Pranesh</creatorcontrib><creatorcontrib>Colak, Dilek</creatorcontrib><title>Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function</title><title>Computational statistics &amp; data analysis</title><description>When two interventions are randomized to multiple sub-clusters within a whole cluster, accounting for the within sub-cluster (intra-cluster) and between sub-clusters (inter-cluster) correlations is needed to produce valid analyses of the effect of interventions. With the growing interest in copulas and their applications in statistical research, we demonstrate, through applications, how copula functions may be used to account for the correlation among responses across sub-clusters. Copulas having asymmetric dependence property may prove useful for modeling the relationship between random functions especially in clinical, health and environmental sciences where response data are in general skewed. These functions can in general be used to study scale-free measures of dependence, and they can be used as a starting point for constructing families of bivariate distributions, with a view to simulations. The core contribution of this paper is to provide an alternative approach for estimating the inter-cluster correlation using copula to accurately estimate the treatment effect when the outcome variable is measured on the dichotomous scale. Two data sets are used to illustrate the proposed methodology.</description><subject>Accounting</subject><subject>Applications</subject><subject>Asymmetry</subject><subject>Beta binomial distribution</subject><subject>Cluster randomization</subject><subject>Cluster randomization Correlated proportion Beta binomial distribution Copula function</subject><subject>Clusters</subject><subject>Copula function</subject><subject>Correlated proportion</subject><subject>Correlation analysis</subject><subject>Data processing</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kM2OFCEUhStGE9vRF3DFxriqHn6qgDZuJpPRMWnjRtcE4ZbSoaEEqpOep_dWepyli8MN5Dsnl9N1bxndMsrk9WHrqrdbTvGB6i2OZ92GacV7JUb-vNsgpPrdoMTL7lWtB0opH5TedO0m2Xh-COkX8TBD8pAamUuec2khp0pCIi4utUEhxSafj-EBPGkl2Fg_kK_ZQ1zNISHR_yNdLgWiXRPIKVi8z0u0ZFqSW99edy8mtMObx3nV_fh09_32vt9_-_zl9mbfO6F5652evB4mLX9acH5QSku3E8JrDlIA83oCBZbbUWhKHWOSC7mzCmAcmHZgxVX3_pKLH_qzQG3mGKqDGG2CvFSjx1ExMQwSSX4hXcm1FpjMXMLRlrNh1KwNm4NZGzZrw4ZqgwNN-4upYHPuyQEAK5qsORlhxxGPMwqdDEdACdSMYpxLw7gYze92xLh3j9va6mycsG4X6lMsF5ppSQfkPl44wOpOAYqpLkBy4EMB14zP4X9b_wVKuq46</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Shoukri, Mohamed M.</creator><creator>Kumar, Pranesh</creator><creator>Colak, Dilek</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function</title><author>Shoukri, Mohamed M. ; Kumar, Pranesh ; Colak, Dilek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-c8fd84f86baecd47786c933d82e63e1d8fe7ea2a53800c1162369a7ee5418cea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accounting</topic><topic>Applications</topic><topic>Asymmetry</topic><topic>Beta binomial distribution</topic><topic>Cluster randomization</topic><topic>Cluster randomization Correlated proportion Beta binomial distribution Copula function</topic><topic>Clusters</topic><topic>Copula function</topic><topic>Correlated proportion</topic><topic>Correlation analysis</topic><topic>Data processing</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shoukri, Mohamed M.</creatorcontrib><creatorcontrib>Kumar, Pranesh</creatorcontrib><creatorcontrib>Colak, Dilek</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shoukri, Mohamed M.</au><au>Kumar, Pranesh</au><au>Colak, Dilek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>55</volume><issue>3</issue><spage>1226</spage><epage>1235</epage><pages>1226-1235</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>When two interventions are randomized to multiple sub-clusters within a whole cluster, accounting for the within sub-cluster (intra-cluster) and between sub-clusters (inter-cluster) correlations is needed to produce valid analyses of the effect of interventions. With the growing interest in copulas and their applications in statistical research, we demonstrate, through applications, how copula functions may be used to account for the correlation among responses across sub-clusters. Copulas having asymmetric dependence property may prove useful for modeling the relationship between random functions especially in clinical, health and environmental sciences where response data are in general skewed. These functions can in general be used to study scale-free measures of dependence, and they can be used as a starting point for constructing families of bivariate distributions, with a view to simulations. The core contribution of this paper is to provide an alternative approach for estimating the inter-cluster correlation using copula to accurately estimate the treatment effect when the outcome variable is measured on the dichotomous scale. Two data sets are used to illustrate the proposed methodology.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2010.08.010</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2011-03, Vol.55 (3), p.1226-1235
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_855713446
source RePEc; Elsevier ScienceDirect Journals
subjects Accounting
Applications
Asymmetry
Beta binomial distribution
Cluster randomization
Cluster randomization Correlated proportion Beta binomial distribution Copula function
Clusters
Copula function
Correlated proportion
Correlation analysis
Data processing
Exact sciences and technology
General topics
Mathematical analysis
Mathematical models
Mathematics
Medical sciences
Multivariate analysis
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Probability and statistics
Sciences and techniques of general use
Statistics
title Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20dependent%20proportions%20in%20cluster%20randomized%20trials:%20Modeling%20inter-cluster%20correlation%20via%20copula%20function&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Shoukri,%20Mohamed%20M.&rft.date=2011-03-01&rft.volume=55&rft.issue=3&rft.spage=1226&rft.epage=1235&rft.pages=1226-1235&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2010.08.010&rft_dat=%3Cproquest_cross%3E855713446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855713446&rft_id=info:pmid/&rft_els_id=S0167947310003257&rfr_iscdi=true