Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function
When two interventions are randomized to multiple sub-clusters within a whole cluster, accounting for the within sub-cluster (intra-cluster) and between sub-clusters (inter-cluster) correlations is needed to produce valid analyses of the effect of interventions. With the growing interest in copulas...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2011-03, Vol.55 (3), p.1226-1235 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1235 |
---|---|
container_issue | 3 |
container_start_page | 1226 |
container_title | Computational statistics & data analysis |
container_volume | 55 |
creator | Shoukri, Mohamed M. Kumar, Pranesh Colak, Dilek |
description | When two interventions are randomized to multiple sub-clusters within a whole cluster, accounting for the within sub-cluster (intra-cluster) and between sub-clusters (inter-cluster) correlations is needed to produce valid analyses of the effect of interventions. With the growing interest in copulas and their applications in statistical research, we demonstrate, through applications, how copula functions may be used to account for the correlation among responses across sub-clusters. Copulas having asymmetric dependence property may prove useful for modeling the relationship between random functions especially in clinical, health and environmental sciences where response data are in general skewed. These functions can in general be used to study scale-free measures of dependence, and they can be used as a starting point for constructing families of bivariate distributions, with a view to simulations. The core contribution of this paper is to provide an alternative approach for estimating the inter-cluster correlation using copula to accurately estimate the treatment effect when the outcome variable is measured on the dichotomous scale. Two data sets are used to illustrate the proposed methodology. |
doi_str_mv | 10.1016/j.csda.2010.08.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855713446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947310003257</els_id><sourcerecordid>855713446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-c8fd84f86baecd47786c933d82e63e1d8fe7ea2a53800c1162369a7ee5418cea3</originalsourceid><addsrcrecordid>eNp9kM2OFCEUhStGE9vRF3DFxriqHn6qgDZuJpPRMWnjRtcE4ZbSoaEEqpOep_dWepyli8MN5Dsnl9N1bxndMsrk9WHrqrdbTvGB6i2OZ92GacV7JUb-vNsgpPrdoMTL7lWtB0opH5TedO0m2Xh-COkX8TBD8pAamUuec2khp0pCIi4utUEhxSafj-EBPGkl2Fg_kK_ZQ1zNISHR_yNdLgWiXRPIKVi8z0u0ZFqSW99edy8mtMObx3nV_fh09_32vt9_-_zl9mbfO6F5652evB4mLX9acH5QSku3E8JrDlIA83oCBZbbUWhKHWOSC7mzCmAcmHZgxVX3_pKLH_qzQG3mGKqDGG2CvFSjx1ExMQwSSX4hXcm1FpjMXMLRlrNh1KwNm4NZGzZrw4ZqgwNN-4upYHPuyQEAK5qsORlhxxGPMwqdDEdACdSMYpxLw7gYze92xLh3j9va6mycsG4X6lMsF5ppSQfkPl44wOpOAYqpLkBy4EMB14zP4X9b_wVKuq46</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855713446</pqid></control><display><type>article</type><title>Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Shoukri, Mohamed M. ; Kumar, Pranesh ; Colak, Dilek</creator><creatorcontrib>Shoukri, Mohamed M. ; Kumar, Pranesh ; Colak, Dilek</creatorcontrib><description>When two interventions are randomized to multiple sub-clusters within a whole cluster, accounting for the within sub-cluster (intra-cluster) and between sub-clusters (inter-cluster) correlations is needed to produce valid analyses of the effect of interventions. With the growing interest in copulas and their applications in statistical research, we demonstrate, through applications, how copula functions may be used to account for the correlation among responses across sub-clusters. Copulas having asymmetric dependence property may prove useful for modeling the relationship between random functions especially in clinical, health and environmental sciences where response data are in general skewed. These functions can in general be used to study scale-free measures of dependence, and they can be used as a starting point for constructing families of bivariate distributions, with a view to simulations. The core contribution of this paper is to provide an alternative approach for estimating the inter-cluster correlation using copula to accurately estimate the treatment effect when the outcome variable is measured on the dichotomous scale. Two data sets are used to illustrate the proposed methodology.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2010.08.010</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Accounting ; Applications ; Asymmetry ; Beta binomial distribution ; Cluster randomization ; Cluster randomization Correlated proportion Beta binomial distribution Copula function ; Clusters ; Copula function ; Correlated proportion ; Correlation analysis ; Data processing ; Exact sciences and technology ; General topics ; Mathematical analysis ; Mathematical models ; Mathematics ; Medical sciences ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Probability and statistics ; Sciences and techniques of general use ; Statistics</subject><ispartof>Computational statistics & data analysis, 2011-03, Vol.55 (3), p.1226-1235</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c382t-c8fd84f86baecd47786c933d82e63e1d8fe7ea2a53800c1162369a7ee5418cea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947310003257$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,3993,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23818604$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a55_3ay_3a2011_3ai_3a3_3ap_3a1226-1235.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Shoukri, Mohamed M.</creatorcontrib><creatorcontrib>Kumar, Pranesh</creatorcontrib><creatorcontrib>Colak, Dilek</creatorcontrib><title>Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function</title><title>Computational statistics & data analysis</title><description>When two interventions are randomized to multiple sub-clusters within a whole cluster, accounting for the within sub-cluster (intra-cluster) and between sub-clusters (inter-cluster) correlations is needed to produce valid analyses of the effect of interventions. With the growing interest in copulas and their applications in statistical research, we demonstrate, through applications, how copula functions may be used to account for the correlation among responses across sub-clusters. Copulas having asymmetric dependence property may prove useful for modeling the relationship between random functions especially in clinical, health and environmental sciences where response data are in general skewed. These functions can in general be used to study scale-free measures of dependence, and they can be used as a starting point for constructing families of bivariate distributions, with a view to simulations. The core contribution of this paper is to provide an alternative approach for estimating the inter-cluster correlation using copula to accurately estimate the treatment effect when the outcome variable is measured on the dichotomous scale. Two data sets are used to illustrate the proposed methodology.</description><subject>Accounting</subject><subject>Applications</subject><subject>Asymmetry</subject><subject>Beta binomial distribution</subject><subject>Cluster randomization</subject><subject>Cluster randomization Correlated proportion Beta binomial distribution Copula function</subject><subject>Clusters</subject><subject>Copula function</subject><subject>Correlated proportion</subject><subject>Correlation analysis</subject><subject>Data processing</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kM2OFCEUhStGE9vRF3DFxriqHn6qgDZuJpPRMWnjRtcE4ZbSoaEEqpOep_dWepyli8MN5Dsnl9N1bxndMsrk9WHrqrdbTvGB6i2OZ92GacV7JUb-vNsgpPrdoMTL7lWtB0opH5TedO0m2Xh-COkX8TBD8pAamUuec2khp0pCIi4utUEhxSafj-EBPGkl2Fg_kK_ZQ1zNISHR_yNdLgWiXRPIKVi8z0u0ZFqSW99edy8mtMObx3nV_fh09_32vt9_-_zl9mbfO6F5652evB4mLX9acH5QSku3E8JrDlIA83oCBZbbUWhKHWOSC7mzCmAcmHZgxVX3_pKLH_qzQG3mGKqDGG2CvFSjx1ExMQwSSX4hXcm1FpjMXMLRlrNh1KwNm4NZGzZrw4ZqgwNN-4upYHPuyQEAK5qsORlhxxGPMwqdDEdACdSMYpxLw7gYze92xLh3j9va6mycsG4X6lMsF5ppSQfkPl44wOpOAYqpLkBy4EMB14zP4X9b_wVKuq46</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Shoukri, Mohamed M.</creator><creator>Kumar, Pranesh</creator><creator>Colak, Dilek</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function</title><author>Shoukri, Mohamed M. ; Kumar, Pranesh ; Colak, Dilek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-c8fd84f86baecd47786c933d82e63e1d8fe7ea2a53800c1162369a7ee5418cea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accounting</topic><topic>Applications</topic><topic>Asymmetry</topic><topic>Beta binomial distribution</topic><topic>Cluster randomization</topic><topic>Cluster randomization Correlated proportion Beta binomial distribution Copula function</topic><topic>Clusters</topic><topic>Copula function</topic><topic>Correlated proportion</topic><topic>Correlation analysis</topic><topic>Data processing</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shoukri, Mohamed M.</creatorcontrib><creatorcontrib>Kumar, Pranesh</creatorcontrib><creatorcontrib>Colak, Dilek</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shoukri, Mohamed M.</au><au>Kumar, Pranesh</au><au>Colak, Dilek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function</atitle><jtitle>Computational statistics & data analysis</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>55</volume><issue>3</issue><spage>1226</spage><epage>1235</epage><pages>1226-1235</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>When two interventions are randomized to multiple sub-clusters within a whole cluster, accounting for the within sub-cluster (intra-cluster) and between sub-clusters (inter-cluster) correlations is needed to produce valid analyses of the effect of interventions. With the growing interest in copulas and their applications in statistical research, we demonstrate, through applications, how copula functions may be used to account for the correlation among responses across sub-clusters. Copulas having asymmetric dependence property may prove useful for modeling the relationship between random functions especially in clinical, health and environmental sciences where response data are in general skewed. These functions can in general be used to study scale-free measures of dependence, and they can be used as a starting point for constructing families of bivariate distributions, with a view to simulations. The core contribution of this paper is to provide an alternative approach for estimating the inter-cluster correlation using copula to accurately estimate the treatment effect when the outcome variable is measured on the dichotomous scale. Two data sets are used to illustrate the proposed methodology.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2010.08.010</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2011-03, Vol.55 (3), p.1226-1235 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_proquest_miscellaneous_855713446 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | Accounting Applications Asymmetry Beta binomial distribution Cluster randomization Cluster randomization Correlated proportion Beta binomial distribution Copula function Clusters Copula function Correlated proportion Correlation analysis Data processing Exact sciences and technology General topics Mathematical analysis Mathematical models Mathematics Medical sciences Multivariate analysis Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Probability and statistics Sciences and techniques of general use Statistics |
title | Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20dependent%20proportions%20in%20cluster%20randomized%20trials:%20Modeling%20inter-cluster%20correlation%20via%20copula%20function&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Shoukri,%20Mohamed%20M.&rft.date=2011-03-01&rft.volume=55&rft.issue=3&rft.spage=1226&rft.epage=1235&rft.pages=1226-1235&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2010.08.010&rft_dat=%3Cproquest_cross%3E855713446%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855713446&rft_id=info:pmid/&rft_els_id=S0167947310003257&rfr_iscdi=true |