Kaniadakis statistics and the quantum H-theorem
A proof of the quantum H-theorem in the context of Kaniadakis' entropy concept SκQ and a generalization of stosszahlansatz are presented, showing that there exists a quantum version of the second law of thermodynamics consistent with the Kaniadakis statistics. It is also shown that the marginal...
Gespeichert in:
Veröffentlicht in: | Physics letters. A 2011-01, Vol.375 (3), p.352-355 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 3 |
container_start_page | 352 |
container_title | Physics letters. A |
container_volume | 375 |
creator | Santos, A.P. Silva, R. Alcaniz, J.S. Anselmo, D.H.A.L. |
description | A proof of the quantum H-theorem in the context of Kaniadakis' entropy concept SκQ and a generalization of stosszahlansatz are presented, showing that there exists a quantum version of the second law of thermodynamics consistent with the Kaniadakis statistics. It is also shown that the marginal equilibrium states are described by quantum κ-power law extensions of the Fermi–Dirac and Bose–Einstein distributions. |
doi_str_mv | 10.1016/j.physleta.2010.11.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855712931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037596011001515X</els_id><sourcerecordid>855712931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d2d6ea2c59fb3a7fe80f3b6a96757376cf5c5bacc9da17eb7a02ada154a023123</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCyg7Vkn9qON6B6qgRVRiA2tr4kxUlzxa20Hq3-OqsGY1D917NXMIuWe0YJSVs12x3x5DixEKTk9LVtC5vCATtlAi53OuL8mECiVzXVJ2TW5C2FGanFRPyOwNegc1fLmQhQjRhehsyKCvs7jF7DBCH8cuW-dpGjx2t-SqgTbg3W-dks-X54_lOt-8r16XT5vcCs1jXvO6ROBW6qYSoBpc0EZUJehSSSVUaRtpZQXW6hqYwkoB5ekKJuepEYyLKXk45-79cBgxRNO5YLFtocdhDGYhpWJcC5aU5Vlp_RCCx8bsvevAHw2j5gTI7MwfIHMCZBgzCVAyPp6NmP74duhNsA57i7XzaKOpB_dfxA-TAHK6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855712931</pqid></control><display><type>article</type><title>Kaniadakis statistics and the quantum H-theorem</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Santos, A.P. ; Silva, R. ; Alcaniz, J.S. ; Anselmo, D.H.A.L.</creator><creatorcontrib>Santos, A.P. ; Silva, R. ; Alcaniz, J.S. ; Anselmo, D.H.A.L.</creatorcontrib><description>A proof of the quantum H-theorem in the context of Kaniadakis' entropy concept SκQ and a generalization of stosszahlansatz are presented, showing that there exists a quantum version of the second law of thermodynamics consistent with the Kaniadakis statistics. It is also shown that the marginal equilibrium states are described by quantum κ-power law extensions of the Fermi–Dirac and Bose–Einstein distributions.</description><identifier>ISSN: 0375-9601</identifier><identifier>EISSN: 1873-2429</identifier><identifier>DOI: 10.1016/j.physleta.2010.11.045</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Boson ; Entropy ; Fermion ; H-theorem ; Law ; Proving ; Solid state physics ; Statistical mechanics ; Statistics ; Thermodynamics</subject><ispartof>Physics letters. A, 2011-01, Vol.375 (3), p.352-355</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-d2d6ea2c59fb3a7fe80f3b6a96757376cf5c5bacc9da17eb7a02ada154a023123</citedby><cites>FETCH-LOGICAL-c392t-d2d6ea2c59fb3a7fe80f3b6a96757376cf5c5bacc9da17eb7a02ada154a023123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physleta.2010.11.045$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Santos, A.P.</creatorcontrib><creatorcontrib>Silva, R.</creatorcontrib><creatorcontrib>Alcaniz, J.S.</creatorcontrib><creatorcontrib>Anselmo, D.H.A.L.</creatorcontrib><title>Kaniadakis statistics and the quantum H-theorem</title><title>Physics letters. A</title><description>A proof of the quantum H-theorem in the context of Kaniadakis' entropy concept SκQ and a generalization of stosszahlansatz are presented, showing that there exists a quantum version of the second law of thermodynamics consistent with the Kaniadakis statistics. It is also shown that the marginal equilibrium states are described by quantum κ-power law extensions of the Fermi–Dirac and Bose–Einstein distributions.</description><subject>Boson</subject><subject>Entropy</subject><subject>Fermion</subject><subject>H-theorem</subject><subject>Law</subject><subject>Proving</subject><subject>Solid state physics</subject><subject>Statistical mechanics</subject><subject>Statistics</subject><subject>Thermodynamics</subject><issn>0375-9601</issn><issn>1873-2429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCyg7Vkn9qON6B6qgRVRiA2tr4kxUlzxa20Hq3-OqsGY1D917NXMIuWe0YJSVs12x3x5DixEKTk9LVtC5vCATtlAi53OuL8mECiVzXVJ2TW5C2FGanFRPyOwNegc1fLmQhQjRhehsyKCvs7jF7DBCH8cuW-dpGjx2t-SqgTbg3W-dks-X54_lOt-8r16XT5vcCs1jXvO6ROBW6qYSoBpc0EZUJehSSSVUaRtpZQXW6hqYwkoB5ekKJuepEYyLKXk45-79cBgxRNO5YLFtocdhDGYhpWJcC5aU5Vlp_RCCx8bsvevAHw2j5gTI7MwfIHMCZBgzCVAyPp6NmP74duhNsA57i7XzaKOpB_dfxA-TAHK6</recordid><startdate>20110117</startdate><enddate>20110117</enddate><creator>Santos, A.P.</creator><creator>Silva, R.</creator><creator>Alcaniz, J.S.</creator><creator>Anselmo, D.H.A.L.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110117</creationdate><title>Kaniadakis statistics and the quantum H-theorem</title><author>Santos, A.P. ; Silva, R. ; Alcaniz, J.S. ; Anselmo, D.H.A.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d2d6ea2c59fb3a7fe80f3b6a96757376cf5c5bacc9da17eb7a02ada154a023123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boson</topic><topic>Entropy</topic><topic>Fermion</topic><topic>H-theorem</topic><topic>Law</topic><topic>Proving</topic><topic>Solid state physics</topic><topic>Statistical mechanics</topic><topic>Statistics</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, A.P.</creatorcontrib><creatorcontrib>Silva, R.</creatorcontrib><creatorcontrib>Alcaniz, J.S.</creatorcontrib><creatorcontrib>Anselmo, D.H.A.L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics letters. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, A.P.</au><au>Silva, R.</au><au>Alcaniz, J.S.</au><au>Anselmo, D.H.A.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kaniadakis statistics and the quantum H-theorem</atitle><jtitle>Physics letters. A</jtitle><date>2011-01-17</date><risdate>2011</risdate><volume>375</volume><issue>3</issue><spage>352</spage><epage>355</epage><pages>352-355</pages><issn>0375-9601</issn><eissn>1873-2429</eissn><abstract>A proof of the quantum H-theorem in the context of Kaniadakis' entropy concept SκQ and a generalization of stosszahlansatz are presented, showing that there exists a quantum version of the second law of thermodynamics consistent with the Kaniadakis statistics. It is also shown that the marginal equilibrium states are described by quantum κ-power law extensions of the Fermi–Dirac and Bose–Einstein distributions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physleta.2010.11.045</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0375-9601 |
ispartof | Physics letters. A, 2011-01, Vol.375 (3), p.352-355 |
issn | 0375-9601 1873-2429 |
language | eng |
recordid | cdi_proquest_miscellaneous_855712931 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Boson Entropy Fermion H-theorem Law Proving Solid state physics Statistical mechanics Statistics Thermodynamics |
title | Kaniadakis statistics and the quantum H-theorem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kaniadakis%20statistics%20and%20the%20quantum%20H-theorem&rft.jtitle=Physics%20letters.%20A&rft.au=Santos,%20A.P.&rft.date=2011-01-17&rft.volume=375&rft.issue=3&rft.spage=352&rft.epage=355&rft.pages=352-355&rft.issn=0375-9601&rft.eissn=1873-2429&rft_id=info:doi/10.1016/j.physleta.2010.11.045&rft_dat=%3Cproquest_cross%3E855712931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855712931&rft_id=info:pmid/&rft_els_id=S037596011001515X&rfr_iscdi=true |