Quantum memory for entangled continuous-variable states
Quantum information is often thought of in terms of manipulating discrete qubits. But continuous variables can also carry data. A method for storing continuous-variable states of light for up to a millisecond in room-temperature memories is now demonstrated. A quantum memory for light is a key eleme...
Gespeichert in:
Veröffentlicht in: | Nature physics 2011-01, Vol.7 (1), p.13-16 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 1 |
container_start_page | 13 |
container_title | Nature physics |
container_volume | 7 |
creator | Jensen, K. Wasilewski, W. Krauter, H. Fernholz, T. Nielsen, B. M. Owari, M. Plenio, M. B. Serafini, A. Wolf, M. M. Polzik, E. S. |
description | Quantum information is often thought of in terms of manipulating discrete qubits. But continuous variables can also carry data. A method for storing continuous-variable states of light for up to a millisecond in room-temperature memories is now demonstrated.
A quantum memory for light is a key element for the realization of future quantum information networks
1
,
2
,
3
. Requirements for a good quantum memory are versatility (allowing a wide range of inputs) and preservation of quantum information in a way unattainable with any classical memory device. Here we demonstrate such a quantum memory for continuous-variable entangled states, which play a fundamental role in quantum information processing
4
,
5
,
6
. We store an extensive alphabet of two-mode 6.0 dB squeezed states obtained by varying the orientation of squeezing and the displacement of the states. The two components of the entangled state are stored in two room-temperature cells separated by 0.5 m, one for each mode, with a memory time of 1 ms. The true quantum character of the memory is rigorously proved by showing that the experimental memory fidelity 0.52±0.02 significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements. |
doi_str_mv | 10.1038/nphys1819 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855710268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855710268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-daa0829f934c04086c4fc3ac3acfe35e200a5b0ebdda664733416924745724163</originalsourceid><addsrcrecordid>eNplkEtLAzEUhYMoWKsL_8HgRhRG857MUoovKIig65Bm7tQpM0lNMkL_vSmVCgoX7ll8HD4OQucE3xDM1K1bf2wiUaQ-QBNScVFSrsjhPlfsGJ3EuMKYU0nYBFWvo3FpHIoBBh82RetDAS4Zt-yhKax3qXOjH2P5ZUJnFj0UMZkE8RQdtaaPcPbzp-j94f5t9lTOXx6fZ3fz0jKhUtkYgxWt25pxizlW0vLWMrO9FpgAirERCwyLpjFSZj3GiayzJxcVzZFN0eWudx385wgx6aGLFvreOMhaWglREUylyuTFH3Llx-CynM5zSElJTTJ0tYNs8DEGaPU6dIMJG02w3g6o9wNm9nrHxsy4JYTfwv_wNy2fcbc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>819662191</pqid></control><display><type>article</type><title>Quantum memory for entangled continuous-variable states</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Jensen, K. ; Wasilewski, W. ; Krauter, H. ; Fernholz, T. ; Nielsen, B. M. ; Owari, M. ; Plenio, M. B. ; Serafini, A. ; Wolf, M. M. ; Polzik, E. S.</creator><creatorcontrib>Jensen, K. ; Wasilewski, W. ; Krauter, H. ; Fernholz, T. ; Nielsen, B. M. ; Owari, M. ; Plenio, M. B. ; Serafini, A. ; Wolf, M. M. ; Polzik, E. S.</creatorcontrib><description>Quantum information is often thought of in terms of manipulating discrete qubits. But continuous variables can also carry data. A method for storing continuous-variable states of light for up to a millisecond in room-temperature memories is now demonstrated.
A quantum memory for light is a key element for the realization of future quantum information networks
1
,
2
,
3
. Requirements for a good quantum memory are versatility (allowing a wide range of inputs) and preservation of quantum information in a way unattainable with any classical memory device. Here we demonstrate such a quantum memory for continuous-variable entangled states, which play a fundamental role in quantum information processing
4
,
5
,
6
. We store an extensive alphabet of two-mode 6.0 dB squeezed states obtained by varying the orientation of squeezing and the displacement of the states. The two components of the entangled state are stored in two room-temperature cells separated by 0.5 m, one for each mode, with a memory time of 1 ms. The true quantum character of the memory is rigorously proved by showing that the experimental memory fidelity 0.52±0.02 significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys1819</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Atomic ; Benchmarking ; Classical and Continuum Physics ; Complex Systems ; Compressing ; Condensed Matter Physics ; Data storage ; Displacement ; Entangled states ; Information management ; letter ; Mathematical and Computational Physics ; Memory devices ; Molecular ; Networks ; Optical and Plasma Physics ; Orientation ; Physics ; Physics and Astronomy ; Quantum theory ; Stores ; Theoretical</subject><ispartof>Nature physics, 2011-01, Vol.7 (1), p.13-16</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Jan 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-daa0829f934c04086c4fc3ac3acfe35e200a5b0ebdda664733416924745724163</citedby><cites>FETCH-LOGICAL-c358t-daa0829f934c04086c4fc3ac3acfe35e200a5b0ebdda664733416924745724163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys1819$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys1819$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jensen, K.</creatorcontrib><creatorcontrib>Wasilewski, W.</creatorcontrib><creatorcontrib>Krauter, H.</creatorcontrib><creatorcontrib>Fernholz, T.</creatorcontrib><creatorcontrib>Nielsen, B. M.</creatorcontrib><creatorcontrib>Owari, M.</creatorcontrib><creatorcontrib>Plenio, M. B.</creatorcontrib><creatorcontrib>Serafini, A.</creatorcontrib><creatorcontrib>Wolf, M. M.</creatorcontrib><creatorcontrib>Polzik, E. S.</creatorcontrib><title>Quantum memory for entangled continuous-variable states</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Quantum information is often thought of in terms of manipulating discrete qubits. But continuous variables can also carry data. A method for storing continuous-variable states of light for up to a millisecond in room-temperature memories is now demonstrated.
A quantum memory for light is a key element for the realization of future quantum information networks
1
,
2
,
3
. Requirements for a good quantum memory are versatility (allowing a wide range of inputs) and preservation of quantum information in a way unattainable with any classical memory device. Here we demonstrate such a quantum memory for continuous-variable entangled states, which play a fundamental role in quantum information processing
4
,
5
,
6
. We store an extensive alphabet of two-mode 6.0 dB squeezed states obtained by varying the orientation of squeezing and the displacement of the states. The two components of the entangled state are stored in two room-temperature cells separated by 0.5 m, one for each mode, with a memory time of 1 ms. The true quantum character of the memory is rigorously proved by showing that the experimental memory fidelity 0.52±0.02 significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.</description><subject>Atomic</subject><subject>Benchmarking</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Compressing</subject><subject>Condensed Matter Physics</subject><subject>Data storage</subject><subject>Displacement</subject><subject>Entangled states</subject><subject>Information management</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Memory devices</subject><subject>Molecular</subject><subject>Networks</subject><subject>Optical and Plasma Physics</subject><subject>Orientation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum theory</subject><subject>Stores</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNplkEtLAzEUhYMoWKsL_8HgRhRG857MUoovKIig65Bm7tQpM0lNMkL_vSmVCgoX7ll8HD4OQucE3xDM1K1bf2wiUaQ-QBNScVFSrsjhPlfsGJ3EuMKYU0nYBFWvo3FpHIoBBh82RetDAS4Zt-yhKax3qXOjH2P5ZUJnFj0UMZkE8RQdtaaPcPbzp-j94f5t9lTOXx6fZ3fz0jKhUtkYgxWt25pxizlW0vLWMrO9FpgAirERCwyLpjFSZj3GiayzJxcVzZFN0eWudx385wgx6aGLFvreOMhaWglREUylyuTFH3Llx-CynM5zSElJTTJ0tYNs8DEGaPU6dIMJG02w3g6o9wNm9nrHxsy4JYTfwv_wNy2fcbc</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Jensen, K.</creator><creator>Wasilewski, W.</creator><creator>Krauter, H.</creator><creator>Fernholz, T.</creator><creator>Nielsen, B. M.</creator><creator>Owari, M.</creator><creator>Plenio, M. B.</creator><creator>Serafini, A.</creator><creator>Wolf, M. M.</creator><creator>Polzik, E. S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20110101</creationdate><title>Quantum memory for entangled continuous-variable states</title><author>Jensen, K. ; Wasilewski, W. ; Krauter, H. ; Fernholz, T. ; Nielsen, B. M. ; Owari, M. ; Plenio, M. B. ; Serafini, A. ; Wolf, M. M. ; Polzik, E. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-daa0829f934c04086c4fc3ac3acfe35e200a5b0ebdda664733416924745724163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic</topic><topic>Benchmarking</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Compressing</topic><topic>Condensed Matter Physics</topic><topic>Data storage</topic><topic>Displacement</topic><topic>Entangled states</topic><topic>Information management</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Memory devices</topic><topic>Molecular</topic><topic>Networks</topic><topic>Optical and Plasma Physics</topic><topic>Orientation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum theory</topic><topic>Stores</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jensen, K.</creatorcontrib><creatorcontrib>Wasilewski, W.</creatorcontrib><creatorcontrib>Krauter, H.</creatorcontrib><creatorcontrib>Fernholz, T.</creatorcontrib><creatorcontrib>Nielsen, B. M.</creatorcontrib><creatorcontrib>Owari, M.</creatorcontrib><creatorcontrib>Plenio, M. B.</creatorcontrib><creatorcontrib>Serafini, A.</creatorcontrib><creatorcontrib>Wolf, M. M.</creatorcontrib><creatorcontrib>Polzik, E. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jensen, K.</au><au>Wasilewski, W.</au><au>Krauter, H.</au><au>Fernholz, T.</au><au>Nielsen, B. M.</au><au>Owari, M.</au><au>Plenio, M. B.</au><au>Serafini, A.</au><au>Wolf, M. M.</au><au>Polzik, E. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum memory for entangled continuous-variable states</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2011-01-01</date><risdate>2011</risdate><volume>7</volume><issue>1</issue><spage>13</spage><epage>16</epage><pages>13-16</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Quantum information is often thought of in terms of manipulating discrete qubits. But continuous variables can also carry data. A method for storing continuous-variable states of light for up to a millisecond in room-temperature memories is now demonstrated.
A quantum memory for light is a key element for the realization of future quantum information networks
1
,
2
,
3
. Requirements for a good quantum memory are versatility (allowing a wide range of inputs) and preservation of quantum information in a way unattainable with any classical memory device. Here we demonstrate such a quantum memory for continuous-variable entangled states, which play a fundamental role in quantum information processing
4
,
5
,
6
. We store an extensive alphabet of two-mode 6.0 dB squeezed states obtained by varying the orientation of squeezing and the displacement of the states. The two components of the entangled state are stored in two room-temperature cells separated by 0.5 m, one for each mode, with a memory time of 1 ms. The true quantum character of the memory is rigorously proved by showing that the experimental memory fidelity 0.52±0.02 significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys1819</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2011-01, Vol.7 (1), p.13-16 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_855710268 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | Atomic Benchmarking Classical and Continuum Physics Complex Systems Compressing Condensed Matter Physics Data storage Displacement Entangled states Information management letter Mathematical and Computational Physics Memory devices Molecular Networks Optical and Plasma Physics Orientation Physics Physics and Astronomy Quantum theory Stores Theoretical |
title | Quantum memory for entangled continuous-variable states |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A40%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20memory%20for%20entangled%20continuous-variable%20states&rft.jtitle=Nature%20physics&rft.au=Jensen,%20K.&rft.date=2011-01-01&rft.volume=7&rft.issue=1&rft.spage=13&rft.epage=16&rft.pages=13-16&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys1819&rft_dat=%3Cproquest_cross%3E855710268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=819662191&rft_id=info:pmid/&rfr_iscdi=true |