Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene–polyaniline
This work utilizes a modification of our process of polymer entrapment in silver to deposit silver crystals on carbon nanofibers at different relative concentrations. The experimental procedure and the characteristics of silver coated nanofibers are presented in detail. The resulting nanofibers are...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2011-01, Vol.71 (2), p.152-159 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 2 |
container_start_page | 152 |
container_title | Composites science and technology |
container_volume | 71 |
creator | Nesher, Guy Serror, Maéva Avnir, David Marom, Gad |
description | This work utilizes a modification of our process of polymer entrapment in silver to deposit silver crystals on carbon nanofibers at different relative concentrations. The experimental procedure and the characteristics of silver coated nanofibers are presented in detail. The resulting nanofibers are then melt-mixed with a polypropylene–polyaniline blend to form a uniform dispersion that is finally extruded to produce continuous monofilament composites of high axial orientation. The reinforcement effect of the silver coated nanofibers, manifested in the mechanical properties of the monofilament composites, is 3–5 folds higher than that of the pristine nanofibers due to the improved stress transfer mechanism of the former. Additional attractive properties of the new system may result from its anisotropic crystalline structure, enhanced thermal stability, potential electrical conductivity and antibacterial behavior. |
doi_str_mv | 10.1016/j.compscitech.2010.11.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855709191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353810004240</els_id><sourcerecordid>855709191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-9cd4e64737bb471459df80413d9a961fa4cb16102ee5771fb78a46c1e896dd6c3</originalsourceid><addsrcrecordid>eNqNkM9OGzEQxi3USk3TvsNyQD1t8Owfe31EUSlISByAs-WdHRdHG3uxl6Dc-g59wz5JHQUhjpxGM_rmm_l-jJ0CXwEHcb5ZYdhOCd1M-Liq-GEOK87bE7aATqoSeMs_sQWvhCjrtu6-sK8pbTjnslXVgtk7N-4oFhjMTEOxM1OI5e8YXnyJJvbBF974YF1PMRU2xIKsJZzdjopIzucJ0pb8XARbTGHcTzFM-5E8_fvz99Ab70bn6Rv7bM2Y6PtrXbKHy5_366vy5vbX9fripsS6q-dS4dCQaGQt-76R0LRqsB1voB6UUQKsabAHAbwiaqUE28vONAKBOiWGQWC9ZD-OvvmPp2dKs966hDSOxlN4TrprW8kVKMhKdVRiDClFsnqKbmviXgPXB7R6o9-h1Qe0GkBntHn37PWKSWhGG41Hl94MqlqKTuVAS7Y-6ihH3jmKOruRRxpczBD1ENwHrv0HvaSZHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855709191</pqid></control><display><type>article</type><title>Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene–polyaniline</title><source>Access via ScienceDirect (Elsevier)</source><creator>Nesher, Guy ; Serror, Maéva ; Avnir, David ; Marom, Gad</creator><creatorcontrib>Nesher, Guy ; Serror, Maéva ; Avnir, David ; Marom, Gad</creatorcontrib><description>This work utilizes a modification of our process of polymer entrapment in silver to deposit silver crystals on carbon nanofibers at different relative concentrations. The experimental procedure and the characteristics of silver coated nanofibers are presented in detail. The resulting nanofibers are then melt-mixed with a polypropylene–polyaniline blend to form a uniform dispersion that is finally extruded to produce continuous monofilament composites of high axial orientation. The reinforcement effect of the silver coated nanofibers, manifested in the mechanical properties of the monofilament composites, is 3–5 folds higher than that of the pristine nanofibers due to the improved stress transfer mechanism of the former. Additional attractive properties of the new system may result from its anisotropic crystalline structure, enhanced thermal stability, potential electrical conductivity and antibacterial behavior.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2010.11.005</identifier><identifier>CODEN: CSTCEH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Carbon fibers ; A. Metals ; A. Particle-reinforced composites ; Anisotropy ; Applied sciences ; B. Electrical conductivity ; B. Mechanical properties ; Carbon fibers ; Composites ; Deposits ; Dispersions ; Electric potential ; Exact sciences and technology ; Fibers and threads ; Forms of application and semi-finished materials ; Nanofibers ; Polymer industry, paints, wood ; Reinforcement ; Resistivity ; Silver ; Technology of polymers</subject><ispartof>Composites science and technology, 2011-01, Vol.71 (2), p.152-159</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-9cd4e64737bb471459df80413d9a961fa4cb16102ee5771fb78a46c1e896dd6c3</citedby><cites>FETCH-LOGICAL-c383t-9cd4e64737bb471459df80413d9a961fa4cb16102ee5771fb78a46c1e896dd6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2010.11.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23768938$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nesher, Guy</creatorcontrib><creatorcontrib>Serror, Maéva</creatorcontrib><creatorcontrib>Avnir, David</creatorcontrib><creatorcontrib>Marom, Gad</creatorcontrib><title>Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene–polyaniline</title><title>Composites science and technology</title><description>This work utilizes a modification of our process of polymer entrapment in silver to deposit silver crystals on carbon nanofibers at different relative concentrations. The experimental procedure and the characteristics of silver coated nanofibers are presented in detail. The resulting nanofibers are then melt-mixed with a polypropylene–polyaniline blend to form a uniform dispersion that is finally extruded to produce continuous monofilament composites of high axial orientation. The reinforcement effect of the silver coated nanofibers, manifested in the mechanical properties of the monofilament composites, is 3–5 folds higher than that of the pristine nanofibers due to the improved stress transfer mechanism of the former. Additional attractive properties of the new system may result from its anisotropic crystalline structure, enhanced thermal stability, potential electrical conductivity and antibacterial behavior.</description><subject>A. Carbon fibers</subject><subject>A. Metals</subject><subject>A. Particle-reinforced composites</subject><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>B. Electrical conductivity</subject><subject>B. Mechanical properties</subject><subject>Carbon fibers</subject><subject>Composites</subject><subject>Deposits</subject><subject>Dispersions</subject><subject>Electric potential</subject><subject>Exact sciences and technology</subject><subject>Fibers and threads</subject><subject>Forms of application and semi-finished materials</subject><subject>Nanofibers</subject><subject>Polymer industry, paints, wood</subject><subject>Reinforcement</subject><subject>Resistivity</subject><subject>Silver</subject><subject>Technology of polymers</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkM9OGzEQxi3USk3TvsNyQD1t8Owfe31EUSlISByAs-WdHRdHG3uxl6Dc-g59wz5JHQUhjpxGM_rmm_l-jJ0CXwEHcb5ZYdhOCd1M-Liq-GEOK87bE7aATqoSeMs_sQWvhCjrtu6-sK8pbTjnslXVgtk7N-4oFhjMTEOxM1OI5e8YXnyJJvbBF974YF1PMRU2xIKsJZzdjopIzucJ0pb8XARbTGHcTzFM-5E8_fvz99Ab70bn6Rv7bM2Y6PtrXbKHy5_366vy5vbX9fripsS6q-dS4dCQaGQt-76R0LRqsB1voB6UUQKsabAHAbwiaqUE28vONAKBOiWGQWC9ZD-OvvmPp2dKs966hDSOxlN4TrprW8kVKMhKdVRiDClFsnqKbmviXgPXB7R6o9-h1Qe0GkBntHn37PWKSWhGG41Hl94MqlqKTuVAS7Y-6ihH3jmKOruRRxpczBD1ENwHrv0HvaSZHw</recordid><startdate>20110117</startdate><enddate>20110117</enddate><creator>Nesher, Guy</creator><creator>Serror, Maéva</creator><creator>Avnir, David</creator><creator>Marom, Gad</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110117</creationdate><title>Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene–polyaniline</title><author>Nesher, Guy ; Serror, Maéva ; Avnir, David ; Marom, Gad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-9cd4e64737bb471459df80413d9a961fa4cb16102ee5771fb78a46c1e896dd6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A. Carbon fibers</topic><topic>A. Metals</topic><topic>A. Particle-reinforced composites</topic><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>B. Electrical conductivity</topic><topic>B. Mechanical properties</topic><topic>Carbon fibers</topic><topic>Composites</topic><topic>Deposits</topic><topic>Dispersions</topic><topic>Electric potential</topic><topic>Exact sciences and technology</topic><topic>Fibers and threads</topic><topic>Forms of application and semi-finished materials</topic><topic>Nanofibers</topic><topic>Polymer industry, paints, wood</topic><topic>Reinforcement</topic><topic>Resistivity</topic><topic>Silver</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nesher, Guy</creatorcontrib><creatorcontrib>Serror, Maéva</creatorcontrib><creatorcontrib>Avnir, David</creatorcontrib><creatorcontrib>Marom, Gad</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nesher, Guy</au><au>Serror, Maéva</au><au>Avnir, David</au><au>Marom, Gad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene–polyaniline</atitle><jtitle>Composites science and technology</jtitle><date>2011-01-17</date><risdate>2011</risdate><volume>71</volume><issue>2</issue><spage>152</spage><epage>159</epage><pages>152-159</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><coden>CSTCEH</coden><abstract>This work utilizes a modification of our process of polymer entrapment in silver to deposit silver crystals on carbon nanofibers at different relative concentrations. The experimental procedure and the characteristics of silver coated nanofibers are presented in detail. The resulting nanofibers are then melt-mixed with a polypropylene–polyaniline blend to form a uniform dispersion that is finally extruded to produce continuous monofilament composites of high axial orientation. The reinforcement effect of the silver coated nanofibers, manifested in the mechanical properties of the monofilament composites, is 3–5 folds higher than that of the pristine nanofibers due to the improved stress transfer mechanism of the former. Additional attractive properties of the new system may result from its anisotropic crystalline structure, enhanced thermal stability, potential electrical conductivity and antibacterial behavior.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2010.11.005</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2011-01, Vol.71 (2), p.152-159 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_miscellaneous_855709191 |
source | Access via ScienceDirect (Elsevier) |
subjects | A. Carbon fibers A. Metals A. Particle-reinforced composites Anisotropy Applied sciences B. Electrical conductivity B. Mechanical properties Carbon fibers Composites Deposits Dispersions Electric potential Exact sciences and technology Fibers and threads Forms of application and semi-finished materials Nanofibers Polymer industry, paints, wood Reinforcement Resistivity Silver Technology of polymers |
title | Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene–polyaniline |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silver%20coated%20vapor-grown-carbon%20nanofibers%20for%20effective%20reinforcement%20of%20polypropylene%E2%80%93polyaniline&rft.jtitle=Composites%20science%20and%20technology&rft.au=Nesher,%20Guy&rft.date=2011-01-17&rft.volume=71&rft.issue=2&rft.spage=152&rft.epage=159&rft.pages=152-159&rft.issn=0266-3538&rft.eissn=1879-1050&rft.coden=CSTCEH&rft_id=info:doi/10.1016/j.compscitech.2010.11.005&rft_dat=%3Cproquest_cross%3E855709191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855709191&rft_id=info:pmid/&rft_els_id=S0266353810004240&rfr_iscdi=true |