Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene–polyaniline

This work utilizes a modification of our process of polymer entrapment in silver to deposit silver crystals on carbon nanofibers at different relative concentrations. The experimental procedure and the characteristics of silver coated nanofibers are presented in detail. The resulting nanofibers are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2011-01, Vol.71 (2), p.152-159
Hauptverfasser: Nesher, Guy, Serror, Maéva, Avnir, David, Marom, Gad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 2
container_start_page 152
container_title Composites science and technology
container_volume 71
creator Nesher, Guy
Serror, Maéva
Avnir, David
Marom, Gad
description This work utilizes a modification of our process of polymer entrapment in silver to deposit silver crystals on carbon nanofibers at different relative concentrations. The experimental procedure and the characteristics of silver coated nanofibers are presented in detail. The resulting nanofibers are then melt-mixed with a polypropylene–polyaniline blend to form a uniform dispersion that is finally extruded to produce continuous monofilament composites of high axial orientation. The reinforcement effect of the silver coated nanofibers, manifested in the mechanical properties of the monofilament composites, is 3–5 folds higher than that of the pristine nanofibers due to the improved stress transfer mechanism of the former. Additional attractive properties of the new system may result from its anisotropic crystalline structure, enhanced thermal stability, potential electrical conductivity and antibacterial behavior.
doi_str_mv 10.1016/j.compscitech.2010.11.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855709191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353810004240</els_id><sourcerecordid>855709191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-9cd4e64737bb471459df80413d9a961fa4cb16102ee5771fb78a46c1e896dd6c3</originalsourceid><addsrcrecordid>eNqNkM9OGzEQxi3USk3TvsNyQD1t8Owfe31EUSlISByAs-WdHRdHG3uxl6Dc-g59wz5JHQUhjpxGM_rmm_l-jJ0CXwEHcb5ZYdhOCd1M-Liq-GEOK87bE7aATqoSeMs_sQWvhCjrtu6-sK8pbTjnslXVgtk7N-4oFhjMTEOxM1OI5e8YXnyJJvbBF974YF1PMRU2xIKsJZzdjopIzucJ0pb8XARbTGHcTzFM-5E8_fvz99Ab70bn6Rv7bM2Y6PtrXbKHy5_366vy5vbX9fripsS6q-dS4dCQaGQt-76R0LRqsB1voB6UUQKsabAHAbwiaqUE28vONAKBOiWGQWC9ZD-OvvmPp2dKs966hDSOxlN4TrprW8kVKMhKdVRiDClFsnqKbmviXgPXB7R6o9-h1Qe0GkBntHn37PWKSWhGG41Hl94MqlqKTuVAS7Y-6ihH3jmKOruRRxpczBD1ENwHrv0HvaSZHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855709191</pqid></control><display><type>article</type><title>Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene–polyaniline</title><source>Access via ScienceDirect (Elsevier)</source><creator>Nesher, Guy ; Serror, Maéva ; Avnir, David ; Marom, Gad</creator><creatorcontrib>Nesher, Guy ; Serror, Maéva ; Avnir, David ; Marom, Gad</creatorcontrib><description>This work utilizes a modification of our process of polymer entrapment in silver to deposit silver crystals on carbon nanofibers at different relative concentrations. The experimental procedure and the characteristics of silver coated nanofibers are presented in detail. The resulting nanofibers are then melt-mixed with a polypropylene–polyaniline blend to form a uniform dispersion that is finally extruded to produce continuous monofilament composites of high axial orientation. The reinforcement effect of the silver coated nanofibers, manifested in the mechanical properties of the monofilament composites, is 3–5 folds higher than that of the pristine nanofibers due to the improved stress transfer mechanism of the former. Additional attractive properties of the new system may result from its anisotropic crystalline structure, enhanced thermal stability, potential electrical conductivity and antibacterial behavior.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2010.11.005</identifier><identifier>CODEN: CSTCEH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Carbon fibers ; A. Metals ; A. Particle-reinforced composites ; Anisotropy ; Applied sciences ; B. Electrical conductivity ; B. Mechanical properties ; Carbon fibers ; Composites ; Deposits ; Dispersions ; Electric potential ; Exact sciences and technology ; Fibers and threads ; Forms of application and semi-finished materials ; Nanofibers ; Polymer industry, paints, wood ; Reinforcement ; Resistivity ; Silver ; Technology of polymers</subject><ispartof>Composites science and technology, 2011-01, Vol.71 (2), p.152-159</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-9cd4e64737bb471459df80413d9a961fa4cb16102ee5771fb78a46c1e896dd6c3</citedby><cites>FETCH-LOGICAL-c383t-9cd4e64737bb471459df80413d9a961fa4cb16102ee5771fb78a46c1e896dd6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2010.11.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23768938$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nesher, Guy</creatorcontrib><creatorcontrib>Serror, Maéva</creatorcontrib><creatorcontrib>Avnir, David</creatorcontrib><creatorcontrib>Marom, Gad</creatorcontrib><title>Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene–polyaniline</title><title>Composites science and technology</title><description>This work utilizes a modification of our process of polymer entrapment in silver to deposit silver crystals on carbon nanofibers at different relative concentrations. The experimental procedure and the characteristics of silver coated nanofibers are presented in detail. The resulting nanofibers are then melt-mixed with a polypropylene–polyaniline blend to form a uniform dispersion that is finally extruded to produce continuous monofilament composites of high axial orientation. The reinforcement effect of the silver coated nanofibers, manifested in the mechanical properties of the monofilament composites, is 3–5 folds higher than that of the pristine nanofibers due to the improved stress transfer mechanism of the former. Additional attractive properties of the new system may result from its anisotropic crystalline structure, enhanced thermal stability, potential electrical conductivity and antibacterial behavior.</description><subject>A. Carbon fibers</subject><subject>A. Metals</subject><subject>A. Particle-reinforced composites</subject><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>B. Electrical conductivity</subject><subject>B. Mechanical properties</subject><subject>Carbon fibers</subject><subject>Composites</subject><subject>Deposits</subject><subject>Dispersions</subject><subject>Electric potential</subject><subject>Exact sciences and technology</subject><subject>Fibers and threads</subject><subject>Forms of application and semi-finished materials</subject><subject>Nanofibers</subject><subject>Polymer industry, paints, wood</subject><subject>Reinforcement</subject><subject>Resistivity</subject><subject>Silver</subject><subject>Technology of polymers</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkM9OGzEQxi3USk3TvsNyQD1t8Owfe31EUSlISByAs-WdHRdHG3uxl6Dc-g59wz5JHQUhjpxGM_rmm_l-jJ0CXwEHcb5ZYdhOCd1M-Liq-GEOK87bE7aATqoSeMs_sQWvhCjrtu6-sK8pbTjnslXVgtk7N-4oFhjMTEOxM1OI5e8YXnyJJvbBF974YF1PMRU2xIKsJZzdjopIzucJ0pb8XARbTGHcTzFM-5E8_fvz99Ab70bn6Rv7bM2Y6PtrXbKHy5_366vy5vbX9fripsS6q-dS4dCQaGQt-76R0LRqsB1voB6UUQKsabAHAbwiaqUE28vONAKBOiWGQWC9ZD-OvvmPp2dKs966hDSOxlN4TrprW8kVKMhKdVRiDClFsnqKbmviXgPXB7R6o9-h1Qe0GkBntHn37PWKSWhGG41Hl94MqlqKTuVAS7Y-6ihH3jmKOruRRxpczBD1ENwHrv0HvaSZHw</recordid><startdate>20110117</startdate><enddate>20110117</enddate><creator>Nesher, Guy</creator><creator>Serror, Maéva</creator><creator>Avnir, David</creator><creator>Marom, Gad</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110117</creationdate><title>Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene–polyaniline</title><author>Nesher, Guy ; Serror, Maéva ; Avnir, David ; Marom, Gad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-9cd4e64737bb471459df80413d9a961fa4cb16102ee5771fb78a46c1e896dd6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A. Carbon fibers</topic><topic>A. Metals</topic><topic>A. Particle-reinforced composites</topic><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>B. Electrical conductivity</topic><topic>B. Mechanical properties</topic><topic>Carbon fibers</topic><topic>Composites</topic><topic>Deposits</topic><topic>Dispersions</topic><topic>Electric potential</topic><topic>Exact sciences and technology</topic><topic>Fibers and threads</topic><topic>Forms of application and semi-finished materials</topic><topic>Nanofibers</topic><topic>Polymer industry, paints, wood</topic><topic>Reinforcement</topic><topic>Resistivity</topic><topic>Silver</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nesher, Guy</creatorcontrib><creatorcontrib>Serror, Maéva</creatorcontrib><creatorcontrib>Avnir, David</creatorcontrib><creatorcontrib>Marom, Gad</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nesher, Guy</au><au>Serror, Maéva</au><au>Avnir, David</au><au>Marom, Gad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene–polyaniline</atitle><jtitle>Composites science and technology</jtitle><date>2011-01-17</date><risdate>2011</risdate><volume>71</volume><issue>2</issue><spage>152</spage><epage>159</epage><pages>152-159</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><coden>CSTCEH</coden><abstract>This work utilizes a modification of our process of polymer entrapment in silver to deposit silver crystals on carbon nanofibers at different relative concentrations. The experimental procedure and the characteristics of silver coated nanofibers are presented in detail. The resulting nanofibers are then melt-mixed with a polypropylene–polyaniline blend to form a uniform dispersion that is finally extruded to produce continuous monofilament composites of high axial orientation. The reinforcement effect of the silver coated nanofibers, manifested in the mechanical properties of the monofilament composites, is 3–5 folds higher than that of the pristine nanofibers due to the improved stress transfer mechanism of the former. Additional attractive properties of the new system may result from its anisotropic crystalline structure, enhanced thermal stability, potential electrical conductivity and antibacterial behavior.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2010.11.005</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-3538
ispartof Composites science and technology, 2011-01, Vol.71 (2), p.152-159
issn 0266-3538
1879-1050
language eng
recordid cdi_proquest_miscellaneous_855709191
source Access via ScienceDirect (Elsevier)
subjects A. Carbon fibers
A. Metals
A. Particle-reinforced composites
Anisotropy
Applied sciences
B. Electrical conductivity
B. Mechanical properties
Carbon fibers
Composites
Deposits
Dispersions
Electric potential
Exact sciences and technology
Fibers and threads
Forms of application and semi-finished materials
Nanofibers
Polymer industry, paints, wood
Reinforcement
Resistivity
Silver
Technology of polymers
title Silver coated vapor-grown-carbon nanofibers for effective reinforcement of polypropylene–polyaniline
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silver%20coated%20vapor-grown-carbon%20nanofibers%20for%20effective%20reinforcement%20of%20polypropylene%E2%80%93polyaniline&rft.jtitle=Composites%20science%20and%20technology&rft.au=Nesher,%20Guy&rft.date=2011-01-17&rft.volume=71&rft.issue=2&rft.spage=152&rft.epage=159&rft.pages=152-159&rft.issn=0266-3538&rft.eissn=1879-1050&rft.coden=CSTCEH&rft_id=info:doi/10.1016/j.compscitech.2010.11.005&rft_dat=%3Cproquest_cross%3E855709191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855709191&rft_id=info:pmid/&rft_els_id=S0266353810004240&rfr_iscdi=true