Renormalization group operators for maps and universal scaling of universal scaling exponents

Renormalization group (RG) methods provide a unifying framework for understanding critical behaviour, such as transition to chaos in area-preserving maps and other dynamical systems, which have associated with them universal scaling exponents. Recently, de la Llave et al. (2007) [10] have formulated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D 2011-02, Vol.240 (3), p.317-322
1. Verfasser: Apte, Amit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 322
container_issue 3
container_start_page 317
container_title Physica. D
container_volume 240
creator Apte, Amit
description Renormalization group (RG) methods provide a unifying framework for understanding critical behaviour, such as transition to chaos in area-preserving maps and other dynamical systems, which have associated with them universal scaling exponents. Recently, de la Llave et al. (2007) [10] have formulated the Principle of Approximate Combination of Scaling Exponents (PACSE for short), which relates exponents for different criticalities via their combinatorial properties. The main objective of this paper is to show that certain integrable fixed points of RG operators for area-preserving maps do indeed follow the PACSE. ► Renormalization group operators for invariant circles of area-preserving maps with quadratic irrational rotation number are presented. ► The simple fixed points and two-cycles and their scaling exponents are calculated explicitly. ► It is shown that the simple fixed points follow the Principle of Approximate Combination of Scaling Exponents (PACSE).
doi_str_mv 10.1016/j.physd.2010.09.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855705781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167278910002551</els_id><sourcerecordid>855705781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-10e12e95b93af44c8d1f7df078da6c272b621e5943119791ff1ebea75118f67c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKu_wM1sxNXU3ExnkixcSPEFBUF0KSHN3NSUaTImU7H-eqcPXImrC4fvnMs5hJwDHQGF6moxat_XqR4x2itUjigtD8gABGe5oIwdkkFP8ZxxIY_JSUoLSinwgg_I2zP6EJe6cd-6c8Fn8xhWbRZajLoLMWU2xGyp25RpX2cr7z4xJt1kyfQWP8-C_UPErzZ49F06JUdWNwnP9ndIXu9uXyYP-fTp_nFyM81NUZVdDhSBoSxnstB2PDaiBstrS7modWUYZ7OKAZZyXABILsFawBlqXgIIW3FTDMnlLreN4WOFqVNLlww2jfYYVkmJsuS05AJ6stiRJoaUIlrVRrfUca2Aqs2WaqG2W6rNlopK1W_Zuy72-XrT0UbtjUu_VlbwSootd73jsC_76TCqZBx6g7WLaDpVB_fvnx-SA40m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855705781</pqid></control><display><type>article</type><title>Renormalization group operators for maps and universal scaling of universal scaling exponents</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Apte, Amit</creator><creatorcontrib>Apte, Amit</creatorcontrib><description>Renormalization group (RG) methods provide a unifying framework for understanding critical behaviour, such as transition to chaos in area-preserving maps and other dynamical systems, which have associated with them universal scaling exponents. Recently, de la Llave et al. (2007) [10] have formulated the Principle of Approximate Combination of Scaling Exponents (PACSE for short), which relates exponents for different criticalities via their combinatorial properties. The main objective of this paper is to show that certain integrable fixed points of RG operators for area-preserving maps do indeed follow the PACSE. ► Renormalization group operators for invariant circles of area-preserving maps with quadratic irrational rotation number are presented. ► The simple fixed points and two-cycles and their scaling exponents are calculated explicitly. ► It is shown that the simple fixed points follow the Principle of Approximate Combination of Scaling Exponents (PACSE).</description><identifier>ISSN: 0167-2789</identifier><identifier>EISSN: 1872-8022</identifier><identifier>DOI: 10.1016/j.physd.2010.09.005</identifier><identifier>CODEN: PDNPDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximation ; Chaos theory ; Combinatorial analysis ; Critical scaling exponents ; Dynamical systems ; Exact sciences and technology ; Exponents ; Nonlinear phenomena ; Operators ; Physics ; Renormalization group operators ; Simple fixed points</subject><ispartof>Physica. D, 2011-02, Vol.240 (3), p.317-322</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-10e12e95b93af44c8d1f7df078da6c272b621e5943119791ff1ebea75118f67c3</citedby><cites>FETCH-LOGICAL-c365t-10e12e95b93af44c8d1f7df078da6c272b621e5943119791ff1ebea75118f67c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physd.2010.09.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23769805$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Apte, Amit</creatorcontrib><title>Renormalization group operators for maps and universal scaling of universal scaling exponents</title><title>Physica. D</title><description>Renormalization group (RG) methods provide a unifying framework for understanding critical behaviour, such as transition to chaos in area-preserving maps and other dynamical systems, which have associated with them universal scaling exponents. Recently, de la Llave et al. (2007) [10] have formulated the Principle of Approximate Combination of Scaling Exponents (PACSE for short), which relates exponents for different criticalities via their combinatorial properties. The main objective of this paper is to show that certain integrable fixed points of RG operators for area-preserving maps do indeed follow the PACSE. ► Renormalization group operators for invariant circles of area-preserving maps with quadratic irrational rotation number are presented. ► The simple fixed points and two-cycles and their scaling exponents are calculated explicitly. ► It is shown that the simple fixed points follow the Principle of Approximate Combination of Scaling Exponents (PACSE).</description><subject>Approximation</subject><subject>Chaos theory</subject><subject>Combinatorial analysis</subject><subject>Critical scaling exponents</subject><subject>Dynamical systems</subject><subject>Exact sciences and technology</subject><subject>Exponents</subject><subject>Nonlinear phenomena</subject><subject>Operators</subject><subject>Physics</subject><subject>Renormalization group operators</subject><subject>Simple fixed points</subject><issn>0167-2789</issn><issn>1872-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKu_wM1sxNXU3ExnkixcSPEFBUF0KSHN3NSUaTImU7H-eqcPXImrC4fvnMs5hJwDHQGF6moxat_XqR4x2itUjigtD8gABGe5oIwdkkFP8ZxxIY_JSUoLSinwgg_I2zP6EJe6cd-6c8Fn8xhWbRZajLoLMWU2xGyp25RpX2cr7z4xJt1kyfQWP8-C_UPErzZ49F06JUdWNwnP9ndIXu9uXyYP-fTp_nFyM81NUZVdDhSBoSxnstB2PDaiBstrS7modWUYZ7OKAZZyXABILsFawBlqXgIIW3FTDMnlLreN4WOFqVNLlww2jfYYVkmJsuS05AJ6stiRJoaUIlrVRrfUca2Aqs2WaqG2W6rNlopK1W_Zuy72-XrT0UbtjUu_VlbwSootd73jsC_76TCqZBx6g7WLaDpVB_fvnx-SA40m</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Apte, Amit</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20110201</creationdate><title>Renormalization group operators for maps and universal scaling of universal scaling exponents</title><author>Apte, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-10e12e95b93af44c8d1f7df078da6c272b621e5943119791ff1ebea75118f67c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Chaos theory</topic><topic>Combinatorial analysis</topic><topic>Critical scaling exponents</topic><topic>Dynamical systems</topic><topic>Exact sciences and technology</topic><topic>Exponents</topic><topic>Nonlinear phenomena</topic><topic>Operators</topic><topic>Physics</topic><topic>Renormalization group operators</topic><topic>Simple fixed points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Apte, Amit</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Apte, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renormalization group operators for maps and universal scaling of universal scaling exponents</atitle><jtitle>Physica. D</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>240</volume><issue>3</issue><spage>317</spage><epage>322</epage><pages>317-322</pages><issn>0167-2789</issn><eissn>1872-8022</eissn><coden>PDNPDT</coden><abstract>Renormalization group (RG) methods provide a unifying framework for understanding critical behaviour, such as transition to chaos in area-preserving maps and other dynamical systems, which have associated with them universal scaling exponents. Recently, de la Llave et al. (2007) [10] have formulated the Principle of Approximate Combination of Scaling Exponents (PACSE for short), which relates exponents for different criticalities via their combinatorial properties. The main objective of this paper is to show that certain integrable fixed points of RG operators for area-preserving maps do indeed follow the PACSE. ► Renormalization group operators for invariant circles of area-preserving maps with quadratic irrational rotation number are presented. ► The simple fixed points and two-cycles and their scaling exponents are calculated explicitly. ► It is shown that the simple fixed points follow the Principle of Approximate Combination of Scaling Exponents (PACSE).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physd.2010.09.005</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-2789
ispartof Physica. D, 2011-02, Vol.240 (3), p.317-322
issn 0167-2789
1872-8022
language eng
recordid cdi_proquest_miscellaneous_855705781
source Elsevier ScienceDirect Journals Complete
subjects Approximation
Chaos theory
Combinatorial analysis
Critical scaling exponents
Dynamical systems
Exact sciences and technology
Exponents
Nonlinear phenomena
Operators
Physics
Renormalization group operators
Simple fixed points
title Renormalization group operators for maps and universal scaling of universal scaling exponents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renormalization%20group%20operators%20for%20maps%20and%20universal%20scaling%20of%20universal%20scaling%20exponents&rft.jtitle=Physica.%20D&rft.au=Apte,%20Amit&rft.date=2011-02-01&rft.volume=240&rft.issue=3&rft.spage=317&rft.epage=322&rft.pages=317-322&rft.issn=0167-2789&rft.eissn=1872-8022&rft.coden=PDNPDT&rft_id=info:doi/10.1016/j.physd.2010.09.005&rft_dat=%3Cproquest_cross%3E855705781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855705781&rft_id=info:pmid/&rft_els_id=S0167278910002551&rfr_iscdi=true