Option pricing under some Lévy-like stochastic processes

A generalization of the Lèvy model for financial options is considered which employs pseudodifferential operators with symbols depending on the state variables throughout a small parameter ε . Adapting the classical method of the construction of a parametrix by means of the pseudodifferential calcul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics letters 2011-04, Vol.24 (4), p.572-576
1. Verfasser: Agliardi, Rossella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 576
container_issue 4
container_start_page 572
container_title Applied mathematics letters
container_volume 24
creator Agliardi, Rossella
description A generalization of the Lèvy model for financial options is considered which employs pseudodifferential operators with symbols depending on the state variables throughout a small parameter ε . Adapting the classical method of the construction of a parametrix by means of the pseudodifferential calculus an approximate solution to the pricing problem is derived and its implication in terms of the volatility smile, even in very stylized models, is obtained.
doi_str_mv 10.1016/j.aml.2010.11.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855705547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893965910004349</els_id><sourcerecordid>855705547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-444b923039c2603ef322e079b49df5885b7a7c84cde5db916a341febe94736b73</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI4-gLtuxFVr0iRtgisZ_IOB2eg6pOmtZuzPmNsZmEfyOXwxU0Zcurpc-M45nEPIJaMZo6y4WWe2a7OcTj_LKJNHZMZUyVMpZH5MZlRpnupC6lNyhrimlHLN1Yzo1Wb0Q59sgne-f0u2fQ0hwaGDZPn9tdunrf-ABMfBvVscvYvg4AAR8JycNLZFuPi9c_L6cP-yeEqXq8fnxd0ydVyKMRVCVDrnMc7lBeXQ8DwHWupK6LqRSsmqtKVTwtUg60qzwnLBGqhAi5IXVcnn5PrgG5M_t4Cj6Tw6aFvbw7BFo6QsqZRiItmBdGFADNCY2KqzYW8YNdNKZm3iSmZayTBm4kpRc_XrbtHZtgm2dx7_hDlXTFNFI3d74CBW3XkIBp2H3kHtA7jR1IP_J-UHcUB8ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855705547</pqid></control><display><type>article</type><title>Option pricing under some Lévy-like stochastic processes</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Agliardi, Rossella</creator><creatorcontrib>Agliardi, Rossella</creatorcontrib><description>A generalization of the Lèvy model for financial options is considered which employs pseudodifferential operators with symbols depending on the state variables throughout a small parameter ε . Adapting the classical method of the construction of a parametrix by means of the pseudodifferential calculus an approximate solution to the pricing problem is derived and its implication in terms of the volatility smile, even in very stylized models, is obtained.</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2010.11.015</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Approximation ; Calculus ; Construction costs ; Exact sciences and technology ; Lévy processes ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Operator theory ; Option pricing ; Pricing ; Pseudo differential operators ; Sciences and techniques of general use ; Smile ; Stochastic processes ; Symbols ; Volatility</subject><ispartof>Applied mathematics letters, 2011-04, Vol.24 (4), p.572-576</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-444b923039c2603ef322e079b49df5885b7a7c84cde5db916a341febe94736b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aml.2010.11.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23819080$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Agliardi, Rossella</creatorcontrib><title>Option pricing under some Lévy-like stochastic processes</title><title>Applied mathematics letters</title><description>A generalization of the Lèvy model for financial options is considered which employs pseudodifferential operators with symbols depending on the state variables throughout a small parameter ε . Adapting the classical method of the construction of a parametrix by means of the pseudodifferential calculus an approximate solution to the pricing problem is derived and its implication in terms of the volatility smile, even in very stylized models, is obtained.</description><subject>Approximation</subject><subject>Calculus</subject><subject>Construction costs</subject><subject>Exact sciences and technology</subject><subject>Lévy processes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Operator theory</subject><subject>Option pricing</subject><subject>Pricing</subject><subject>Pseudo differential operators</subject><subject>Sciences and techniques of general use</subject><subject>Smile</subject><subject>Stochastic processes</subject><subject>Symbols</subject><subject>Volatility</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI4-gLtuxFVr0iRtgisZ_IOB2eg6pOmtZuzPmNsZmEfyOXwxU0Zcurpc-M45nEPIJaMZo6y4WWe2a7OcTj_LKJNHZMZUyVMpZH5MZlRpnupC6lNyhrimlHLN1Yzo1Wb0Q59sgne-f0u2fQ0hwaGDZPn9tdunrf-ABMfBvVscvYvg4AAR8JycNLZFuPi9c_L6cP-yeEqXq8fnxd0ydVyKMRVCVDrnMc7lBeXQ8DwHWupK6LqRSsmqtKVTwtUg60qzwnLBGqhAi5IXVcnn5PrgG5M_t4Cj6Tw6aFvbw7BFo6QsqZRiItmBdGFADNCY2KqzYW8YNdNKZm3iSmZayTBm4kpRc_XrbtHZtgm2dx7_hDlXTFNFI3d74CBW3XkIBp2H3kHtA7jR1IP_J-UHcUB8ew</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Agliardi, Rossella</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110401</creationdate><title>Option pricing under some Lévy-like stochastic processes</title><author>Agliardi, Rossella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-444b923039c2603ef322e079b49df5885b7a7c84cde5db916a341febe94736b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Calculus</topic><topic>Construction costs</topic><topic>Exact sciences and technology</topic><topic>Lévy processes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Operator theory</topic><topic>Option pricing</topic><topic>Pricing</topic><topic>Pseudo differential operators</topic><topic>Sciences and techniques of general use</topic><topic>Smile</topic><topic>Stochastic processes</topic><topic>Symbols</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agliardi, Rossella</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agliardi, Rossella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Option pricing under some Lévy-like stochastic processes</atitle><jtitle>Applied mathematics letters</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>24</volume><issue>4</issue><spage>572</spage><epage>576</epage><pages>572-576</pages><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>A generalization of the Lèvy model for financial options is considered which employs pseudodifferential operators with symbols depending on the state variables throughout a small parameter ε . Adapting the classical method of the construction of a parametrix by means of the pseudodifferential calculus an approximate solution to the pricing problem is derived and its implication in terms of the volatility smile, even in very stylized models, is obtained.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2010.11.015</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-9659
ispartof Applied mathematics letters, 2011-04, Vol.24 (4), p.572-576
issn 0893-9659
1873-5452
language eng
recordid cdi_proquest_miscellaneous_855705547
source Elsevier ScienceDirect Journals Complete - AutoHoldings; EZB-FREE-00999 freely available EZB journals
subjects Approximation
Calculus
Construction costs
Exact sciences and technology
Lévy processes
Mathematical analysis
Mathematical models
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Operator theory
Option pricing
Pricing
Pseudo differential operators
Sciences and techniques of general use
Smile
Stochastic processes
Symbols
Volatility
title Option pricing under some Lévy-like stochastic processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Option%20pricing%20under%20some%20L%C3%A9vy-like%20stochastic%20processes&rft.jtitle=Applied%20mathematics%20letters&rft.au=Agliardi,%20Rossella&rft.date=2011-04-01&rft.volume=24&rft.issue=4&rft.spage=572&rft.epage=576&rft.pages=572-576&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2010.11.015&rft_dat=%3Cproquest_cross%3E855705547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855705547&rft_id=info:pmid/&rft_els_id=S0893965910004349&rfr_iscdi=true