Option pricing under some Lévy-like stochastic processes
A generalization of the Lèvy model for financial options is considered which employs pseudodifferential operators with symbols depending on the state variables throughout a small parameter ε . Adapting the classical method of the construction of a parametrix by means of the pseudodifferential calcul...
Gespeichert in:
Veröffentlicht in: | Applied mathematics letters 2011-04, Vol.24 (4), p.572-576 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 576 |
---|---|
container_issue | 4 |
container_start_page | 572 |
container_title | Applied mathematics letters |
container_volume | 24 |
creator | Agliardi, Rossella |
description | A generalization of the Lèvy model for financial options is considered which employs pseudodifferential operators with symbols depending on the state variables throughout a small parameter
ε
. Adapting the classical method of the construction of a parametrix by means of the pseudodifferential calculus an approximate solution to the pricing problem is derived and its implication in terms of the volatility smile, even in very stylized models, is obtained. |
doi_str_mv | 10.1016/j.aml.2010.11.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855705547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893965910004349</els_id><sourcerecordid>855705547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-444b923039c2603ef322e079b49df5885b7a7c84cde5db916a341febe94736b73</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI4-gLtuxFVr0iRtgisZ_IOB2eg6pOmtZuzPmNsZmEfyOXwxU0Zcurpc-M45nEPIJaMZo6y4WWe2a7OcTj_LKJNHZMZUyVMpZH5MZlRpnupC6lNyhrimlHLN1Yzo1Wb0Q59sgne-f0u2fQ0hwaGDZPn9tdunrf-ABMfBvVscvYvg4AAR8JycNLZFuPi9c_L6cP-yeEqXq8fnxd0ydVyKMRVCVDrnMc7lBeXQ8DwHWupK6LqRSsmqtKVTwtUg60qzwnLBGqhAi5IXVcnn5PrgG5M_t4Cj6Tw6aFvbw7BFo6QsqZRiItmBdGFADNCY2KqzYW8YNdNKZm3iSmZayTBm4kpRc_XrbtHZtgm2dx7_hDlXTFNFI3d74CBW3XkIBp2H3kHtA7jR1IP_J-UHcUB8ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855705547</pqid></control><display><type>article</type><title>Option pricing under some Lévy-like stochastic processes</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Agliardi, Rossella</creator><creatorcontrib>Agliardi, Rossella</creatorcontrib><description>A generalization of the Lèvy model for financial options is considered which employs pseudodifferential operators with symbols depending on the state variables throughout a small parameter
ε
. Adapting the classical method of the construction of a parametrix by means of the pseudodifferential calculus an approximate solution to the pricing problem is derived and its implication in terms of the volatility smile, even in very stylized models, is obtained.</description><identifier>ISSN: 0893-9659</identifier><identifier>EISSN: 1873-5452</identifier><identifier>DOI: 10.1016/j.aml.2010.11.015</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Approximation ; Calculus ; Construction costs ; Exact sciences and technology ; Lévy processes ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Operator theory ; Option pricing ; Pricing ; Pseudo differential operators ; Sciences and techniques of general use ; Smile ; Stochastic processes ; Symbols ; Volatility</subject><ispartof>Applied mathematics letters, 2011-04, Vol.24 (4), p.572-576</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c354t-444b923039c2603ef322e079b49df5885b7a7c84cde5db916a341febe94736b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aml.2010.11.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23819080$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Agliardi, Rossella</creatorcontrib><title>Option pricing under some Lévy-like stochastic processes</title><title>Applied mathematics letters</title><description>A generalization of the Lèvy model for financial options is considered which employs pseudodifferential operators with symbols depending on the state variables throughout a small parameter
ε
. Adapting the classical method of the construction of a parametrix by means of the pseudodifferential calculus an approximate solution to the pricing problem is derived and its implication in terms of the volatility smile, even in very stylized models, is obtained.</description><subject>Approximation</subject><subject>Calculus</subject><subject>Construction costs</subject><subject>Exact sciences and technology</subject><subject>Lévy processes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Operator theory</subject><subject>Option pricing</subject><subject>Pricing</subject><subject>Pseudo differential operators</subject><subject>Sciences and techniques of general use</subject><subject>Smile</subject><subject>Stochastic processes</subject><subject>Symbols</subject><subject>Volatility</subject><issn>0893-9659</issn><issn>1873-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI4-gLtuxFVr0iRtgisZ_IOB2eg6pOmtZuzPmNsZmEfyOXwxU0Zcurpc-M45nEPIJaMZo6y4WWe2a7OcTj_LKJNHZMZUyVMpZH5MZlRpnupC6lNyhrimlHLN1Yzo1Wb0Q59sgne-f0u2fQ0hwaGDZPn9tdunrf-ABMfBvVscvYvg4AAR8JycNLZFuPi9c_L6cP-yeEqXq8fnxd0ydVyKMRVCVDrnMc7lBeXQ8DwHWupK6LqRSsmqtKVTwtUg60qzwnLBGqhAi5IXVcnn5PrgG5M_t4Cj6Tw6aFvbw7BFo6QsqZRiItmBdGFADNCY2KqzYW8YNdNKZm3iSmZayTBm4kpRc_XrbtHZtgm2dx7_hDlXTFNFI3d74CBW3XkIBp2H3kHtA7jR1IP_J-UHcUB8ew</recordid><startdate>20110401</startdate><enddate>20110401</enddate><creator>Agliardi, Rossella</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110401</creationdate><title>Option pricing under some Lévy-like stochastic processes</title><author>Agliardi, Rossella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-444b923039c2603ef322e079b49df5885b7a7c84cde5db916a341febe94736b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Calculus</topic><topic>Construction costs</topic><topic>Exact sciences and technology</topic><topic>Lévy processes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Operator theory</topic><topic>Option pricing</topic><topic>Pricing</topic><topic>Pseudo differential operators</topic><topic>Sciences and techniques of general use</topic><topic>Smile</topic><topic>Stochastic processes</topic><topic>Symbols</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agliardi, Rossella</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agliardi, Rossella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Option pricing under some Lévy-like stochastic processes</atitle><jtitle>Applied mathematics letters</jtitle><date>2011-04-01</date><risdate>2011</risdate><volume>24</volume><issue>4</issue><spage>572</spage><epage>576</epage><pages>572-576</pages><issn>0893-9659</issn><eissn>1873-5452</eissn><abstract>A generalization of the Lèvy model for financial options is considered which employs pseudodifferential operators with symbols depending on the state variables throughout a small parameter
ε
. Adapting the classical method of the construction of a parametrix by means of the pseudodifferential calculus an approximate solution to the pricing problem is derived and its implication in terms of the volatility smile, even in very stylized models, is obtained.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.aml.2010.11.015</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-9659 |
ispartof | Applied mathematics letters, 2011-04, Vol.24 (4), p.572-576 |
issn | 0893-9659 1873-5452 |
language | eng |
recordid | cdi_proquest_miscellaneous_855705547 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; EZB-FREE-00999 freely available EZB journals |
subjects | Approximation Calculus Construction costs Exact sciences and technology Lévy processes Mathematical analysis Mathematical models Mathematics Numerical analysis Numerical analysis. Scientific computation Operator theory Option pricing Pricing Pseudo differential operators Sciences and techniques of general use Smile Stochastic processes Symbols Volatility |
title | Option pricing under some Lévy-like stochastic processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Option%20pricing%20under%20some%20L%C3%A9vy-like%20stochastic%20processes&rft.jtitle=Applied%20mathematics%20letters&rft.au=Agliardi,%20Rossella&rft.date=2011-04-01&rft.volume=24&rft.issue=4&rft.spage=572&rft.epage=576&rft.pages=572-576&rft.issn=0893-9659&rft.eissn=1873-5452&rft_id=info:doi/10.1016/j.aml.2010.11.015&rft_dat=%3Cproquest_cross%3E855705547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855705547&rft_id=info:pmid/&rft_els_id=S0893965910004349&rfr_iscdi=true |