Wind energy assessment incorporating particle swarm optimization method

In this paper, wind energy in Taiwan is assessed according to Weibull function. The heuristic searching technique, particle swarm optimization (PSO), is applied originally to find the Weibull parameters. Wind data used is measured by three wind turbines located at different climate regions, i.e. Day...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2011-03, Vol.52 (3), p.1630-1637
1. Verfasser: Chang, Tian Pau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1637
container_issue 3
container_start_page 1630
container_title Energy conversion and management
container_volume 52
creator Chang, Tian Pau
description In this paper, wind energy in Taiwan is assessed according to Weibull function. The heuristic searching technique, particle swarm optimization (PSO), is applied originally to find the Weibull parameters. Wind data used is measured by three wind turbines located at different climate regions, i.e. Dayuan, Hengchun and Penghu. The results show that the PSO is powerful in searching parameters. Three stations experiencing stronger northeastern monsoon have more power density in winter. Yearly wind speed distribution in Hengchun matches best with the Weibull function. Weibull shape parameters lie between 2 and 3; scale parameters reveal similar trends with mean speeds by 12% greater. On the basis of Weibull distribution, the order of magnitude is always in speed carrying maximum energy, scale parameter, mean speed and most probable speed for all the stations. There is much room to enhance turbine’s conversion efficiency especially in Penghu according to the analyses of availability and capacity factors. The wind in inland stations could relatively provide more energy near noon. Wind power density presents inverse change with solar irradiance over the year.
doi_str_mv 10.1016/j.enconman.2010.10.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855704938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890410004735</els_id><sourcerecordid>855704938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-ca6c1a30de70b863692918cb15f9f4c35e5193d91f71950ce7b52a0ef3544b323</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BelF9NJ1kjRNc1PEfyB4UTyGbDpds7RJTbqKfnq7rnrU08Cb994MP0IOKcwo0PJ0OUNvg--MnzH4EmfAii0yoZVUOWNMbpMJUFXmlYJil-yltAQALqCckOsn5-sMPcbFe2ZSwpQ69EPmxsrYh2gG5xdZb-LgbItZejOxy0I_uM59jLvgsw6H51Dvk53GtAkPvueUPF5dPlzc5Hf317cX53e5LUAOuTWlpYZDjRLmVclLxRSt7JyKRjWF5QIFVbxWtJFUCbAo54IZwIaLophzxqfkeNPbx_CywjToziWLbWs8hlXSlRASCsWr0Xnyp5NKKSkHJdal5cZqY0gpYqP76DoT3zUFvWasl_qHsV4zXusj4zF49H3DJGvaJhpvXfpNM14xQcdvpuRs48MRzavDqJN1YyPWLqIddB3cf6c-Afrrldk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777130952</pqid></control><display><type>article</type><title>Wind energy assessment incorporating particle swarm optimization method</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chang, Tian Pau</creator><creatorcontrib>Chang, Tian Pau</creatorcontrib><description>In this paper, wind energy in Taiwan is assessed according to Weibull function. The heuristic searching technique, particle swarm optimization (PSO), is applied originally to find the Weibull parameters. Wind data used is measured by three wind turbines located at different climate regions, i.e. Dayuan, Hengchun and Penghu. The results show that the PSO is powerful in searching parameters. Three stations experiencing stronger northeastern monsoon have more power density in winter. Yearly wind speed distribution in Hengchun matches best with the Weibull function. Weibull shape parameters lie between 2 and 3; scale parameters reveal similar trends with mean speeds by 12% greater. On the basis of Weibull distribution, the order of magnitude is always in speed carrying maximum energy, scale parameter, mean speed and most probable speed for all the stations. There is much room to enhance turbine’s conversion efficiency especially in Penghu according to the analyses of availability and capacity factors. The wind in inland stations could relatively provide more energy near noon. Wind power density presents inverse change with solar irradiance over the year.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2010.10.024</identifier><identifier>CODEN: ECMADL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Assessments ; Density ; Energy ; Exact sciences and technology ; Monsoons ; Natural energy ; Optimization ; Particle swarm optimization ; Searching ; Stations ; Weibull function ; Wind energy ; Wind power generation ; Wind speed ; Wind turbines</subject><ispartof>Energy conversion and management, 2011-03, Vol.52 (3), p.1630-1637</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-ca6c1a30de70b863692918cb15f9f4c35e5193d91f71950ce7b52a0ef3544b323</citedby><cites>FETCH-LOGICAL-c407t-ca6c1a30de70b863692918cb15f9f4c35e5193d91f71950ce7b52a0ef3544b323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enconman.2010.10.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23825149$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Tian Pau</creatorcontrib><title>Wind energy assessment incorporating particle swarm optimization method</title><title>Energy conversion and management</title><description>In this paper, wind energy in Taiwan is assessed according to Weibull function. The heuristic searching technique, particle swarm optimization (PSO), is applied originally to find the Weibull parameters. Wind data used is measured by three wind turbines located at different climate regions, i.e. Dayuan, Hengchun and Penghu. The results show that the PSO is powerful in searching parameters. Three stations experiencing stronger northeastern monsoon have more power density in winter. Yearly wind speed distribution in Hengchun matches best with the Weibull function. Weibull shape parameters lie between 2 and 3; scale parameters reveal similar trends with mean speeds by 12% greater. On the basis of Weibull distribution, the order of magnitude is always in speed carrying maximum energy, scale parameter, mean speed and most probable speed for all the stations. There is much room to enhance turbine’s conversion efficiency especially in Penghu according to the analyses of availability and capacity factors. The wind in inland stations could relatively provide more energy near noon. Wind power density presents inverse change with solar irradiance over the year.</description><subject>Applied sciences</subject><subject>Assessments</subject><subject>Density</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Monsoons</subject><subject>Natural energy</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Searching</subject><subject>Stations</subject><subject>Weibull function</subject><subject>Wind energy</subject><subject>Wind power generation</subject><subject>Wind speed</subject><subject>Wind turbines</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BelF9NJ1kjRNc1PEfyB4UTyGbDpds7RJTbqKfnq7rnrU08Cb994MP0IOKcwo0PJ0OUNvg--MnzH4EmfAii0yoZVUOWNMbpMJUFXmlYJil-yltAQALqCckOsn5-sMPcbFe2ZSwpQ69EPmxsrYh2gG5xdZb-LgbItZejOxy0I_uM59jLvgsw6H51Dvk53GtAkPvueUPF5dPlzc5Hf317cX53e5LUAOuTWlpYZDjRLmVclLxRSt7JyKRjWF5QIFVbxWtJFUCbAo54IZwIaLophzxqfkeNPbx_CywjToziWLbWs8hlXSlRASCsWr0Xnyp5NKKSkHJdal5cZqY0gpYqP76DoT3zUFvWasl_qHsV4zXusj4zF49H3DJGvaJhpvXfpNM14xQcdvpuRs48MRzavDqJN1YyPWLqIddB3cf6c-Afrrldk</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Chang, Tian Pau</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope></search><sort><creationdate>20110301</creationdate><title>Wind energy assessment incorporating particle swarm optimization method</title><author>Chang, Tian Pau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-ca6c1a30de70b863692918cb15f9f4c35e5193d91f71950ce7b52a0ef3544b323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Assessments</topic><topic>Density</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Monsoons</topic><topic>Natural energy</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Searching</topic><topic>Stations</topic><topic>Weibull function</topic><topic>Wind energy</topic><topic>Wind power generation</topic><topic>Wind speed</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Tian Pau</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Tian Pau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind energy assessment incorporating particle swarm optimization method</atitle><jtitle>Energy conversion and management</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>52</volume><issue>3</issue><spage>1630</spage><epage>1637</epage><pages>1630-1637</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><coden>ECMADL</coden><abstract>In this paper, wind energy in Taiwan is assessed according to Weibull function. The heuristic searching technique, particle swarm optimization (PSO), is applied originally to find the Weibull parameters. Wind data used is measured by three wind turbines located at different climate regions, i.e. Dayuan, Hengchun and Penghu. The results show that the PSO is powerful in searching parameters. Three stations experiencing stronger northeastern monsoon have more power density in winter. Yearly wind speed distribution in Hengchun matches best with the Weibull function. Weibull shape parameters lie between 2 and 3; scale parameters reveal similar trends with mean speeds by 12% greater. On the basis of Weibull distribution, the order of magnitude is always in speed carrying maximum energy, scale parameter, mean speed and most probable speed for all the stations. There is much room to enhance turbine’s conversion efficiency especially in Penghu according to the analyses of availability and capacity factors. The wind in inland stations could relatively provide more energy near noon. Wind power density presents inverse change with solar irradiance over the year.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2010.10.024</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2011-03, Vol.52 (3), p.1630-1637
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_miscellaneous_855704938
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Assessments
Density
Energy
Exact sciences and technology
Monsoons
Natural energy
Optimization
Particle swarm optimization
Searching
Stations
Weibull function
Wind energy
Wind power generation
Wind speed
Wind turbines
title Wind energy assessment incorporating particle swarm optimization method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20energy%20assessment%20incorporating%20particle%20swarm%20optimization%20method&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Chang,%20Tian%20Pau&rft.date=2011-03-01&rft.volume=52&rft.issue=3&rft.spage=1630&rft.epage=1637&rft.pages=1630-1637&rft.issn=0196-8904&rft.eissn=1879-2227&rft.coden=ECMADL&rft_id=info:doi/10.1016/j.enconman.2010.10.024&rft_dat=%3Cproquest_cross%3E855704938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777130952&rft_id=info:pmid/&rft_els_id=S0196890410004735&rfr_iscdi=true