Towards Efficient SPARQL Query Processing on RDF Data

Efficient support for querying large-scale resource description framework (RDF) triples plays an important role in semantic web data management. This paper presents an efficient RDF query engine to evaluate SPARQL queries, where the inverted index structure is employed for indexing the RDF triples....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tsinghua science and technology 2010-12, Vol.15 (6), p.613-622
1. Verfasser: 刘畅 王昊奋 俞勇 徐林昊
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 622
container_issue 6
container_start_page 613
container_title Tsinghua science and technology
container_volume 15
creator 刘畅 王昊奋 俞勇 徐林昊
description Efficient support for querying large-scale resource description framework (RDF) triples plays an important role in semantic web data management. This paper presents an efficient RDF query engine to evaluate SPARQL queries, where the inverted index structure is employed for indexing the RDF triples. A set of operators on the inverted index was developed for query optimization and evaluation. Then a main-tree-shaped optimization algorithm was developed that transforms a SPARQL query graph into the op-timal query plan by effectively reducing the search space to determine the optimal joining order. The opti-mization collects a set of RDF statistics for estimating the execution cost of the query plan. Finally the opti-mal query plan is evaluated using the defined operators for answering the given SPARQL query. Extensive tests were conducted on both synthetic and real datasets containing up to 100 million triples to evaluate this approach with the results showing that this approach can answer most queries within 1 s and is extremely efficient and scalable in comparison with previous best state-of-the-art RDF stores.
doi_str_mv 10.1016/S1007-0214(10)70108-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_855704758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>37274384</cqvip_id><els_id>S1007021410701085</els_id><sourcerecordid>855704758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-fb93fd4600d3246a5a13911ea36b4e856d15b9ff8f3053874f954df32b49abe33</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwE5AiLsAhYMfPnFDVByBVoi_OluPYxZAmrZ2C-u9J2nLmtKvVzKzmA-AawQcEEXucIwh5DBNE7hC85xBBEdMT0EGCi5gzyE6b_U9yDi5C-IQQM8pxB9BF9aN8HqKhtU47U9bRfNKbTcfRdGv8Lpr4SpsQXLmMqjKaDUbRQNXqEpxZVQRzdZxd8D4aLvov8fjt-bXfG8c6EbiObZZimxMGYY4TwhRVCKcIGYVZRoygLEc0S60VFkOKBSc2pSS3OMlIqjKDcRfcHnLXvtpsTajlygVtikKVptoGKSjlkHAqGiU9KLWvQvDGyrV3K-V3EkHZUpJ7SrJF0J72lCRtfE8Hn2lqfDvjZWgpaJM7b3Qt88r9m3Bz_PxRlctNQ0pmSn9ZVxiJecIJFgT_AuI2d3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855704758</pqid></control><display><type>article</type><title>Towards Efficient SPARQL Query Processing on RDF Data</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>刘畅 王昊奋 俞勇 徐林昊</creator><creatorcontrib>刘畅 王昊奋 俞勇 徐林昊</creatorcontrib><description>Efficient support for querying large-scale resource description framework (RDF) triples plays an important role in semantic web data management. This paper presents an efficient RDF query engine to evaluate SPARQL queries, where the inverted index structure is employed for indexing the RDF triples. A set of operators on the inverted index was developed for query optimization and evaluation. Then a main-tree-shaped optimization algorithm was developed that transforms a SPARQL query graph into the op-timal query plan by effectively reducing the search space to determine the optimal joining order. The opti-mization collects a set of RDF statistics for estimating the execution cost of the query plan. Finally the opti-mal query plan is evaluated using the defined operators for answering the given SPARQL query. Extensive tests were conducted on both synthetic and real datasets containing up to 100 million triples to evaluate this approach with the results showing that this approach can answer most queries within 1 s and is extremely efficient and scalable in comparison with previous best state-of-the-art RDF stores.</description><identifier>ISSN: 1007-0214</identifier><identifier>EISSN: 1878-7606</identifier><identifier>EISSN: 1007-0214</identifier><identifier>DOI: 10.1016/S1007-0214(10)70108-5</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Extreme values ; Indexing ; Operators ; Optimization ; Query processing ; RDF ; resource description framework (RDF) query engine ; Semantics ; SPARQL ; State of the art ; Statistics ; Stores ; 数据管理 ; 查询处理 ; 查询计划 ; 索引结构 ; 语义Web ; 资源描述框架</subject><ispartof>Tsinghua science and technology, 2010-12, Vol.15 (6), p.613-622</ispartof><rights>2010 Tsinghua University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-fb93fd4600d3246a5a13911ea36b4e856d15b9ff8f3053874f954df32b49abe33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85782X/85782X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>刘畅 王昊奋 俞勇 徐林昊</creatorcontrib><title>Towards Efficient SPARQL Query Processing on RDF Data</title><title>Tsinghua science and technology</title><addtitle>Tsinghua Science and Technology</addtitle><description>Efficient support for querying large-scale resource description framework (RDF) triples plays an important role in semantic web data management. This paper presents an efficient RDF query engine to evaluate SPARQL queries, where the inverted index structure is employed for indexing the RDF triples. A set of operators on the inverted index was developed for query optimization and evaluation. Then a main-tree-shaped optimization algorithm was developed that transforms a SPARQL query graph into the op-timal query plan by effectively reducing the search space to determine the optimal joining order. The opti-mization collects a set of RDF statistics for estimating the execution cost of the query plan. Finally the opti-mal query plan is evaluated using the defined operators for answering the given SPARQL query. Extensive tests were conducted on both synthetic and real datasets containing up to 100 million triples to evaluate this approach with the results showing that this approach can answer most queries within 1 s and is extremely efficient and scalable in comparison with previous best state-of-the-art RDF stores.</description><subject>Extreme values</subject><subject>Indexing</subject><subject>Operators</subject><subject>Optimization</subject><subject>Query processing</subject><subject>RDF</subject><subject>resource description framework (RDF) query engine</subject><subject>Semantics</subject><subject>SPARQL</subject><subject>State of the art</subject><subject>Statistics</subject><subject>Stores</subject><subject>数据管理</subject><subject>查询处理</subject><subject>查询计划</subject><subject>索引结构</subject><subject>语义Web</subject><subject>资源描述框架</subject><issn>1007-0214</issn><issn>1878-7606</issn><issn>1007-0214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwE5AiLsAhYMfPnFDVByBVoi_OluPYxZAmrZ2C-u9J2nLmtKvVzKzmA-AawQcEEXucIwh5DBNE7hC85xBBEdMT0EGCi5gzyE6b_U9yDi5C-IQQM8pxB9BF9aN8HqKhtU47U9bRfNKbTcfRdGv8Lpr4SpsQXLmMqjKaDUbRQNXqEpxZVQRzdZxd8D4aLvov8fjt-bXfG8c6EbiObZZimxMGYY4TwhRVCKcIGYVZRoygLEc0S60VFkOKBSc2pSS3OMlIqjKDcRfcHnLXvtpsTajlygVtikKVptoGKSjlkHAqGiU9KLWvQvDGyrV3K-V3EkHZUpJ7SrJF0J72lCRtfE8Hn2lqfDvjZWgpaJM7b3Qt88r9m3Bz_PxRlctNQ0pmSn9ZVxiJecIJFgT_AuI2d3M</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>刘畅 王昊奋 俞勇 徐林昊</creator><general>Elsevier Ltd</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201012</creationdate><title>Towards Efficient SPARQL Query Processing on RDF Data</title><author>刘畅 王昊奋 俞勇 徐林昊</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-fb93fd4600d3246a5a13911ea36b4e856d15b9ff8f3053874f954df32b49abe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Extreme values</topic><topic>Indexing</topic><topic>Operators</topic><topic>Optimization</topic><topic>Query processing</topic><topic>RDF</topic><topic>resource description framework (RDF) query engine</topic><topic>Semantics</topic><topic>SPARQL</topic><topic>State of the art</topic><topic>Statistics</topic><topic>Stores</topic><topic>数据管理</topic><topic>查询处理</topic><topic>查询计划</topic><topic>索引结构</topic><topic>语义Web</topic><topic>资源描述框架</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>刘畅 王昊奋 俞勇 徐林昊</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Tsinghua science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>刘畅 王昊奋 俞勇 徐林昊</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Efficient SPARQL Query Processing on RDF Data</atitle><jtitle>Tsinghua science and technology</jtitle><addtitle>Tsinghua Science and Technology</addtitle><date>2010-12</date><risdate>2010</risdate><volume>15</volume><issue>6</issue><spage>613</spage><epage>622</epage><pages>613-622</pages><issn>1007-0214</issn><eissn>1878-7606</eissn><eissn>1007-0214</eissn><abstract>Efficient support for querying large-scale resource description framework (RDF) triples plays an important role in semantic web data management. This paper presents an efficient RDF query engine to evaluate SPARQL queries, where the inverted index structure is employed for indexing the RDF triples. A set of operators on the inverted index was developed for query optimization and evaluation. Then a main-tree-shaped optimization algorithm was developed that transforms a SPARQL query graph into the op-timal query plan by effectively reducing the search space to determine the optimal joining order. The opti-mization collects a set of RDF statistics for estimating the execution cost of the query plan. Finally the opti-mal query plan is evaluated using the defined operators for answering the given SPARQL query. Extensive tests were conducted on both synthetic and real datasets containing up to 100 million triples to evaluate this approach with the results showing that this approach can answer most queries within 1 s and is extremely efficient and scalable in comparison with previous best state-of-the-art RDF stores.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S1007-0214(10)70108-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-0214
ispartof Tsinghua science and technology, 2010-12, Vol.15 (6), p.613-622
issn 1007-0214
1878-7606
1007-0214
language eng
recordid cdi_proquest_miscellaneous_855704758
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Extreme values
Indexing
Operators
Optimization
Query processing
RDF
resource description framework (RDF) query engine
Semantics
SPARQL
State of the art
Statistics
Stores
数据管理
查询处理
查询计划
索引结构
语义Web
资源描述框架
title Towards Efficient SPARQL Query Processing on RDF Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Efficient%20SPARQL%20Query%20Processing%20on%20RDF%20Data&rft.jtitle=Tsinghua%20science%20and%20technology&rft.au=%E5%88%98%E7%95%85%20%E7%8E%8B%E6%98%8A%E5%A5%8B%20%E4%BF%9E%E5%8B%87%20%E5%BE%90%E6%9E%97%E6%98%8A&rft.date=2010-12&rft.volume=15&rft.issue=6&rft.spage=613&rft.epage=622&rft.pages=613-622&rft.issn=1007-0214&rft.eissn=1878-7606&rft_id=info:doi/10.1016/S1007-0214(10)70108-5&rft_dat=%3Cproquest_cross%3E855704758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=855704758&rft_id=info:pmid/&rft_cqvip_id=37274384&rft_els_id=S1007021410701085&rfr_iscdi=true